1
|
Liu M, Yang W, Zhu W, Yu D. Innovative applications and research advances of bacterial biosensors in medicine. Front Microbiol 2025; 16:1507491. [PMID: 40336836 PMCID: PMC12055861 DOI: 10.3389/fmicb.2025.1507491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/24/2025] [Indexed: 05/09/2025] Open
Abstract
The demand for early disease detection, treatment monitoring, and personalized medicine is increasing, making it more imperative than ever to create effective, accurate, portable, intelligent, multifunctional diagnostic equipment. Bacteria possess a remarkable perception of their surroundings and have the capacity to adapt by altering the expression of specific genes. Bacteria interact with target substances and produce detectable signals in response to their presence or concentration. This unique property has been harnessed in the development of bacterial biosensors. Due to groundbreaking advancements in synthetic biology, genetic engineering now enables the creation of bacteria tailored with exceptional detecting traits. In addition to meeting a wide range of application needs, this allows quick and precise detection in intricate settings and offers a strong technological basis for early disease diagnosis and treatment monitoring. This article reviews the applications and recent advancements of bacterial biosensors in the medical field and discusses the challenges and obstacles that remain in their research and application.
Collapse
Affiliation(s)
- Mengting Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University (Hangzhou First People’s Hospital), Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Wenjie Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University (Hangzhou First People’s Hospital), Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Wenqi Zhu
- Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Daojun Yu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University (Hangzhou First People’s Hospital), Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Asemoloye MD, Marchisio MA. Allosteric-Regulation-Based DNA Circuits in Saccharomyces cerevisiae to Detect Organic Acids and Monitor Hydrocarbon Metabolism In Vitro. Methods Mol Biol 2024; 2760:77-94. [PMID: 38468083 DOI: 10.1007/978-1-0716-3658-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
We show the engineering of prokaryotic-transcription-factor-based biosensing devices in Saccharomyces cerevisiae cells for an in vitro detection of common hydrocarbon intermediates/metabolites and potentially, for monitoring of the metabolism of carbon compounds. We employed the bacterial receptor proteins MarR (multiple antibiotic-resistant receptor) and PdhR (pyruvate dehydrogenase-complex regulator) to detect benzoate/salicylate and pyruvate, respectively. The yeast-enhanced green fluorescence protein (yEGFP) was adopted as an output signal. Indeed, the engineered yeast strains showed a strong and dynamic fluorescent output signal in the presence of the input chemicals ranging from 2 fM up to 5 mM. In addition, we describe how to make use of these strains to assess over time the metabolism of complex hydrocarbon compounds due to the hydrocarbon-degrading fungus Trichoderma harzianum (KY488463).
Collapse
|
3
|
Mellini M, Letizia M, Leoni L, Rampioni G. Whole-Cell Biosensors for Qualitative and Quantitative Analysis of Quorum Sensing Signal Molecules and the Investigation of Quorum Quenching Agents. Methods Mol Biol 2024; 2721:55-67. [PMID: 37819515 DOI: 10.1007/978-1-0716-3473-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In Pseudomonas aeruginosa relevant features including virulence and biofilm formation are controlled by quorum sensing (QS), a cell density-dependent intercellular communication system based on the production and response to signal molecules. P. aeruginosa has evolved chemically distinct compounds employed as QS signal molecules (QSSMs) that can be detected and quantified through rapid, sensitive, and low-cost methods based on whole-cell biosensors. Here, we present a series of protocols based on whole-cell biosensors for qualitative and quantitative analysis of QSSMs produced by P. aeruginosa. These protocols can be used to investigate the impact of environmental conditions, genetic modifications, or quorum quenching agents on the production of QSSMs in P. aeruginosa.
Collapse
Affiliation(s)
- Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy.
- IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
4
|
Delatour E, Pagnout C, Zaffino ML, Duval JFL. Comparative Analysis of Cell Metabolic Activity Sensing by Escherichia coli rrnB P1-lux and Cd Responsive-Lux Biosensors: Time-Resolved Experiments and Mechanistic Modelling. BIOSENSORS 2022; 12:763. [PMID: 36140148 PMCID: PMC9496673 DOI: 10.3390/bios12090763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Whole-cell bacterial sensors are used in medical/environmental applications to detect chemicals, and to assess medium toxicity or stress. Non-specific constitutive biosensors generally serve the latter purpose, whereas chemical detection is performed with biosensors involving a specific chemical-inducible promoter. Herein, we show that functioning principles of specific and non-specific whole-cell biosensors are not exclusive as both can probe modulations of cell metabolic activity under stressing conditions. The demonstration is based on (i) time-resolved measurements of bioluminescence produced by constitutive rrnB P1-luxCDABE Escherichia coli biosensor in media differing with respect to carbon source, (ii) theoretical reconstruction of the measured signals using a here-reported theory for bioluminescence generated by constitutive cells, (iii) comparison between time-dependent cell photoactivity (reflecting metabolic activity) retrieved by theory with that we reported recently for cadmium-inducible PzntA-luxCDABE E. coli in media of similar compositions. Whereas signals of constitutive and non-constitutive biosensors differ in terms of shape, amplitude and peak number depending on nutritional medium conditions, analysis highlights the features shared by their respective cell photoactivity patterns mediated by the interplay between stringent response and catabolite repressions. The work advocates for the benefits of a theoretical interpretation for the time-dependent response of biosensors to unravel metabolic and physicochemical contributions to the bioluminescence signal.
Collapse
Affiliation(s)
- Eva Delatour
- Université de Lorraine, CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, Campus Bridoux, F-57070 Metz, France
| | - Christophe Pagnout
- Université de Lorraine, CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, Campus Bridoux, F-57070 Metz, France
| | - Marie L. Zaffino
- Université de Lorraine, CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, Campus Bridoux, F-57070 Metz, France
| | - Jérôme F. L. Duval
- Université de Lorraine, CNRS, LIEC, UMR7360, F-54501 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
5
|
Moraskie M, Roshid MHO, O'Connor G, Dikici E, Zingg JM, Deo S, Daunert S. Microbial whole-cell biosensors: Current applications, challenges, and future perspectives. Biosens Bioelectron 2021; 191:113359. [PMID: 34098470 PMCID: PMC8376793 DOI: 10.1016/j.bios.2021.113359] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/22/2022]
Abstract
Microbial Whole-Cell Biosensors (MWCBs) have seen rapid development with the arrival of 21st century biological and technological capabilities. They consist of microbial species which produce, or limit the production of, a reporter protein in the presence of a target analyte. The quantifiable signal from the reporter protein can be used to determine the bioavailable levels of the target analyte in a variety of sample types at a significantly lower cost than most widely used and well-established analytical instrumentation. Furthermore, the versatile and robust nature of MWCBs shows great potential for their use in otherwise unavailable settings and environments. While MWCBs have been developed for use in biomedical, environmental, and agricultural monitoring, they still face various challenges before they can transition from the laboratory into industrialized settings like their enzyme-based counterparts. In this comprehensive and critical review, we describe the underlying working principles of MWCBs, highlight developments for their use in a variety of fields, detail challenges and current efforts to address them, and discuss exciting implementations of MWCBs helping redefine what is thought to be possible with this expeditiously evolving technology.
Collapse
Affiliation(s)
- Michael Moraskie
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL, 33136, USA
| | - Md Harun Or Roshid
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL, 33136, USA; Department of Chemistry, University of Miami, Miami, FL, 33146, USA
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL, 33136, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL, 33136, USA
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL, 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL, 33136, USA; Department of Chemistry, University of Miami, Miami, FL, 33146, USA; The Miami Clinical and Translational Science Institute, University of Miami, Miami, FL, 33146, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33146, USA.
| |
Collapse
|
6
|
Barger N, Oren I, Li X, Habib M, Daniel R. A Whole-Cell Bacterial Biosensor for Blood Markers Detection in Urine. ACS Synth Biol 2021; 10:1132-1142. [PMID: 33908255 DOI: 10.1021/acssynbio.0c00640] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The early detection of blood in urine (hematuria) can play a crucial role in the treatment of serious diseases (e.g., infections, kidney disease, schistosomiasis, and cancer). Therefore, the development of low-cost portable biosensors for blood detection in urine has become necessary. Here, we designed an ultrasensitive whole-cell bacterial biosensor interfaced with an optoelectronic measurement module for heme detection in urine. Heme is a red blood cells (RBCs) component that is liberated from lysed cells. The bacterial biosensor includes Escherichia coli cells carrying a heme-sensitive synthetic promoter integrated with a luciferase reporter (luxCDABE) from Photorhabdus luminescens. To improve the bacterial biosensor performance, we re-engineered the genetic structure of luxCDABE operon by splitting it into two parts (luxCDE and luxAB). The luxCDE genes were regulated by the heme-sensitive promoter, and the luxAB genes were regulated by either constitutive or inducible promoters. We examined the genetic circuit's performance in synthetic urine diluent supplied with heme and in human urine supplied with lysed blood. Finally, we interfaced the bacterial biosensor with a light detection setup based on a commercial optical measurement single-photon avalanche photodiode (SPAD). The whole-cell biosensor was tested in human urine with lysed blood, demonstrating a low-cost, portable, and easy-to-use hematuria detection with an ON-to-OFF ratio of 6.5-fold for blood levels from 5 × 104 to 5 × 105 RBC per mL of human urine.
Collapse
Affiliation(s)
- Natalia Barger
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ilan Oren
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ximing Li
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Mouna Habib
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ramez Daniel
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
7
|
Hahne K, Rödel G, Ostermann K. A fluorescence-based yeast sensor for monitoring acetic acid. Eng Life Sci 2021; 21:303-313. [PMID: 33976603 PMCID: PMC8092980 DOI: 10.1002/elsc.202000006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulation of acetic acid indicates an imbalance of the process due to a disturbed composition of the microorganisms. Hence, monitoring the acetic acid concentration is an important parameter to control the biogas process. Here, we describe the generation and validation of a fluorescence-based whole cell sensor for the detection of acetic acid based on the yeast Saccharomyces cerevisiae. Acetic acid induces the transcription of a subset of genes. The 5´-regulatory sequences (5´ URS) of these genes were cloned into a multicopy plasmid to drive the expression of a red fluorescent reporter gene. The 5´ URS of YGP1, encoding a cell wall-related glycoprotein, led to a 20-fold increase of fluorescence upon addition of 30 mM acetic acid to the media. We show that the system allows estimating the approximate concentration of acetic acid in condensation samples from a biogas plant. To avoid plasmid loss and increase the long-term stability of the sensor, we integrated the reporter construct into the yeast genome and tested the suitability of spores for long-term storage of sensor cells. Lowering the reporter gene's copy number resulted in a significant drop of the fluorescence, which can be compensated by applying a yeast pheromone-based signal amplification system.
Collapse
Affiliation(s)
- Katja Hahne
- Institute of Genetics, Faculty of BiologyTechnische Universität DresdenDresdenGermany
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Gerhard Rödel
- Institute of Genetics, Faculty of BiologyTechnische Universität DresdenDresdenGermany
| | - Kai Ostermann
- Institute of Genetics, Faculty of BiologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
8
|
Genetic circuits combined with machine learning provides fast responding living sensors. Biosens Bioelectron 2021; 178:113028. [DOI: 10.1016/j.bios.2021.113028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
|
9
|
Lopreside A, Calabretta MM, Montali L, Zangheri M, Guardigli M, Mirasoli M, Michelini E. Bioluminescence goes portable: recent advances in whole-cell and cell-free bioluminescence biosensors. LUMINESCENCE 2020; 36:278-293. [PMID: 32945075 DOI: 10.1002/bio.3948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in synthetic biology, organic chemistry, and computational models have allowed the application of bioluminescence in several fields, ranging from well established methods for detecting microbial contamination to in vivo imaging to track cancer and stem cells, from cell-based assays to optogenetics. Moreover, thanks to recent technological progress in miniaturized and sensitive light detectors, such as photodiodes and imaging sensors, it is possible to implement laboratory-based assays, such as cell-based and enzymatic assays, into portable analytical devices for point-of-care and on-site applications. This review highlights some recent advances in the development of whole-cell and cell-free bioluminescence biosensors with a glance on current challenges and different strategies that have been used to turn bioassays into biosensors with the required analytical performance. Critical issues and unsolved technical problems are also highlighted, to give the reader a taste of this fascinating and challenging field.
Collapse
Affiliation(s)
- Antonia Lopreside
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | | | - Laura Montali
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy
| | - Mara Mirasoli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d'Oro, Rome, Italy
| | - Elisa Michelini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E 40064, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
10
|
Li YCE, Lee IC. The Current Trends of Biosensors in Tissue Engineering. BIOSENSORS 2020; 10:E88. [PMID: 32756393 PMCID: PMC7459738 DOI: 10.3390/bios10080088] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Biosensors constitute selective, sensitive, and rapid tools for disease diagnosis in tissue engineering applications. Compared to standard enzyme-linked immunosorbent assay (ELISA) analytical technology, biosensors provide a strategy to real-time and on-site monitor micro biophysiological signals via a combination of biological, chemical, and physical technologies. This review summarizes the recent and significant advances made in various biosensor technologies for different applications of biological and biomedical interest, especially on tissue engineering applications. Different fabrication techniques utilized for tissue engineering purposes, such as computer numeric control (CNC), photolithographic, casting, and 3D printing technologies are also discussed. Key developments in the cell/tissue-based biosensors, biomolecular sensing strategies, and the expansion of several biochip approaches such as organs-on-chips, paper based-biochips, and flexible biosensors are available. Cell polarity and cell behaviors such as proliferation, differentiation, stimulation response, and metabolism detection are included. Biosensors for diagnosing tissue disease modes such as brain, heart, lung, and liver systems and for bioimaging are discussed. Finally, we discuss the challenges faced by current biosensing techniques and highlight future prospects of biosensors for tissue engineering applications.
Collapse
Affiliation(s)
- Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
11
|
Sevda S, Garlapati VK, Naha S, Sharma M, Ray SG, Sreekrishnan TR, Goswami P. Biosensing capabilities of bioelectrochemical systems towards sustainable water streams: Technological implications and future prospects. J Biosci Bioeng 2020; 129:647-656. [PMID: 32044271 DOI: 10.1016/j.jbiosc.2020.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/07/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022]
Abstract
Bioelectrochemical systems (BESs) have been intensively investigated over the last decade owing to its wide-scale environmentally friendly applications, among which wastewater treatment, power generation and environmental monitoring for pollutants are prominent. Different variants of BES such as microbial fuel cell, microbial electrolysis cell, microbial desalination cell, enzymatic fuel cell, microbial solar cell, have been studied. These microbial bioelectrocatalytic systems have clear advantages over the existing analytical techniques for sustainable on-site application in wide environmental conditions with minimum human intervention, making the technology irrevocable and economically feasible. The key challenges to establish this technology are to achieve stable and efficient interaction between the electrode surface and microorganisms, reduction of time for start-up and toxic-shock recovery, sensitivity improvement in real-time conditions, device miniaturization and its long-term economically feasible commercial application. This review article summarizes the recent technical progress regarding bio-electrocatalytic processes and the implementation of BESs as a biosensor for determining various compositional characteristics of water and wastewater.
Collapse
Affiliation(s)
- Surajbhan Sevda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; Department of Biotechnology, National Institute of Technology Warangal, Telangana 506004, India.
| | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Himachal Pradesh 173234, India
| | - Sunandan Naha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mohita Sharma
- Department of Biological Sciences, University of Calgary, Calgary T2N1N4, Canada
| | - Sreemoyee Ghosh Ray
- Department of Civil Engineering, Royal Military College of Canada, Kingston ONK7K3B4, Canada
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
12
|
Behera S, Rana G, Satapathy S, Mohanty M, Pradhan S, Panda MK, Ningthoujam R, Hazarika BN, Singh YD. Biosensors in diagnosing COVID-19 and recent development. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100054] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
13
|
Lee KH, Kim DM. In Vitro Use of Cellular Synthetic Machinery for Biosensing Applications. Front Pharmacol 2019; 10:1166. [PMID: 31680954 PMCID: PMC6803485 DOI: 10.3389/fphar.2019.01166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
The application of biosensors is expanding in diverse fields due to their high selectivity and sensitivity. Biosensors employ biological components for the recognition of target analytes. In addition, the amplifying nature of biosynthetic processes can potentially be harnessed to for biological transduction of detection signals. Recent advances in the development of highly productive and cost-effective cell-free synthesis systems make it possible to use these systems as the biological transducers to generate biosensing signals. This review surveys recent developments in cell-free biosensors, focusing on the newly devised mechanisms for the biological recognition of analytes to initiate the amplification processes of transcription and translation.
Collapse
Affiliation(s)
- Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
14
|
Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors. Nat Commun 2019; 10:1697. [PMID: 30979906 PMCID: PMC6461607 DOI: 10.1038/s41467-019-09722-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/21/2019] [Indexed: 11/14/2022] Open
Abstract
Cell-free transcription–translation systems have great potential for biosensing, yet the range of detectable chemicals is limited. Here we provide a workflow to expand the range of molecules detectable by cell-free biosensors through combining synthetic metabolic cascades with transcription factor-based networks. These hybrid cell-free biosensors have a fast response time, strong signal response, and a high dynamic range. In addition, they are capable of functioning in a variety of complex media, including commercial beverages and human urine, in which they can be used to detect clinically relevant concentrations of small molecules. This work provides a foundation to engineer modular cell-free biosensors tailored for many applications. The range of chemicals detectable by cell-free systems is still limited. Here the authors combine metabolic cascades with transcription factor networks to detect small molecules in complex environments.
Collapse
|
15
|
Bilal M, Iqbal HM. Microbial-derived biosensors for monitoring environmental contaminants: Recent advances and future outlook. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2019; 124:8-17. [DOI: 10.1016/j.psep.2019.01.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Michelini E, Calabretta MM, Cevenini L, Lopreside A, Southworth T, Fontaine DM, Simoni P, Branchini BR, Roda A. Smartphone-based multicolor bioluminescent 3D spheroid biosensors for monitoring inflammatory activity. Biosens Bioelectron 2019; 123:269-277. [DOI: 10.1016/j.bios.2018.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/14/2018] [Accepted: 09/01/2018] [Indexed: 12/23/2022]
|
17
|
Cevenini L, Calabretta MM, Calabria D, Roda A, Michelini E. Luciferase Genes as Reporter Reactions: How to Use Them in Molecular Biology? ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 154:3-17. [PMID: 25898810 DOI: 10.1007/10_2015_325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: The latest advances in molecular biology have made available several biotechnological tools that take advantage of the high detectability and quantum efficiency of bioluminescence (BL), with an ever-increasing number of novel applications in environmental, pharmaceutical, food, and forensic fields. Indeed, BL proteins are being used to develop ultrasensitive binding assays and cell-based assays, thanks to their high detectability and to the availability of highly sensitive BL instruments. The appealing aspect of molecular biology tools relying on BL reactions is their general applicability in both in vitro assays, such as cell cultures or purified proteins, and in vivo settings, such as in whole-animal BL imaging. The aim of this chapter is to provide the reader with an overview of state-of-the-art bioluminescent tools based on luciferase genes, highlighting molecular biology strategies that have been applied so far, together with some selected examples.
Collapse
Affiliation(s)
- L Cevenini
- Dept. of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - M M Calabretta
- Dept. of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - D Calabria
- Dept. of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - A Roda
- Dept. of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - E Michelini
- Dept. of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
18
|
O'Connor G, Jeffrey E, Madorma D, Marcillo A, Abreu MT, Deo SK, Dietrich WD, Daunert S. Investigation of Microbiota Alterations and Intestinal Inflammation Post-Spinal Cord Injury in Rat Model. J Neurotrauma 2018; 35:2159-2166. [PMID: 29566601 DOI: 10.1089/neu.2017.5349] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although there has been a significant amount of research focused on the pathophysiology of spinal cord injury (SCI), there is limited information on the consequences of SCI on remote organs. SCI can produce significant effects on a variety of organ systems, including the gastrointestinal tract. Patients with SCI often suffer from severe, debilitating bowel dysfunction in addition to their physical disabilities, which is of major concern for these individuals because of the adverse impact on their quality of life. Herein, we report on our investigation into the effects of SCI and subsequent antibiotic treatment on the intestinal tissue and microbiota. For that, we used a thoracic SCI rat model and investigated changes to the microbiota, proinflammatory cytokine levels, and bacterial communication molecule levels post-injury and gentamicin treatment for 7 days. We discovered significant changes, the most interesting being the differences in the gut microbiota beta diversity of 8-week SCI animals compared to control animals at the family, genus, and species level. Specifically, 35 operational taxonomic units were enriched in the SCI animal group and three were identified at species level; Lactobacillus intestinalis, Clostridium disporicum, and Bifidobacterium choerinum. In contrast, Clostridium saccharogumia was identified as depleted in the SCI animal group. Proinflammatory cytokines interleukin (IL)-12, macrophage inflammatory protein-2 (MIP-2), and tumor necrosis factor alpha were found to be significantly elevated in intestinal tissue homogenate 4 weeks post-SCI compared to 8-weeks post-injury. Further, levels of IL-1β, IL-12, and MIP-2 significantly correlated with changes in beta diversity 8-weeks post-SCI. Our data provide a greater understanding of the early effects of SCI on the microbiota and gastrointestinal tract, highlighting the need for further investigation to elucidate the mechanism underlying these effects.
Collapse
Affiliation(s)
- Gregory O'Connor
- 1 Department of Biochemistry and Molecular Biology, University of Miami , Miller School of Medicine, Miami, Florida
| | - Elisabeth Jeffrey
- 1 Department of Biochemistry and Molecular Biology, University of Miami , Miller School of Medicine, Miami, Florida
| | - Derik Madorma
- 1 Department of Biochemistry and Molecular Biology, University of Miami , Miller School of Medicine, Miami, Florida
| | - Alexander Marcillo
- 2 Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami , Miller School of Medicine, Miami, Florida
| | - Maria T Abreu
- 3 Division of Gastroenterology, University of Miami , Miller School of Medicine, Miami, Florida
| | - Sapna K Deo
- 1 Department of Biochemistry and Molecular Biology, University of Miami , Miller School of Medicine, Miami, Florida
| | - W Dalton Dietrich
- 2 Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami , Miller School of Medicine, Miami, Florida
| | - Sylvia Daunert
- 1 Department of Biochemistry and Molecular Biology, University of Miami , Miller School of Medicine, Miami, Florida
| |
Collapse
|
19
|
Zhao S, Liu P, Niu Y, Chen Z, Khan A, Zhang P, Li X. A Novel Early Warning System Based on a Sediment Microbial Fuel Cell for In Situ and Real Time Hexavalent Chromium Detection in Industrial Wastewater. SENSORS 2018; 18:s18020642. [PMID: 29470394 PMCID: PMC5855485 DOI: 10.3390/s18020642] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 01/25/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a well-known toxic heavy metal in industrial wastewater, but in situ and real time monitoring cannot be achieved by current methods used during industrial wastewater treatment processes. In this study, a Sediment Microbial Fuel Cell (SMFC) was used as a biosensor for in situ real-time monitoring of Cr(VI), which was the organic substrate is oxidized in the anode and Cr(VI) is reduced at the cathode simultaneously. The pH 6.4 and temperature 25 °C were optimal conditions for the operation. Under the optimal conditions, linearity (R2 = 0.9935) of the generated voltage was observed in the Cr(VI) concentration range from 0.2 to 0.7 mg/L. The system showed high specificity for Cr(VI), as other co-existing ions such as Cu2+, Zn2+, and Pb2+ did not interfere with Cr(VI) detection. In addition, when the sediment MFC-based biosensor was applied for measuring Cr(VI) in actual wastewater samples, a low deviation (<8%) was obtained, which indicated its potential as a reliable biosensor device. MiSeq sequencing results showed that electrochemically active bacteria (Geobacter and Pseudomonas) were enriched at least two-fold on the biofilm of the anode in the biosensor as compared to the SMFC without Cr(VI). Cyclic voltammetry curves indicated that a pair of oxidation/reduction peaks appeared at −111 mV and 581 mV, respectively. These results demonstrated that the proposed sediment microbial fuel cell-based biosensor can be applied as an early warning device for real time in situ detection of Cr(VI) in industrial wastewaters.
Collapse
Affiliation(s)
- Shuai Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou 730000, Gansu, China.
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou 730000, Gansu, China.
- Department of Developmental Biology, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Yongyan Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Zhengjun Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Aman Khan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou 730000, Gansu, China.
| | - Pengyun Zhang
- Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730020, Gansu, China.
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222, Tianshuinan Road, Lanzhou 730000, Gansu, China.
| |
Collapse
|
20
|
Chang HJ, Mayonove P, Zavala A, De Visch A, Minard P, Cohen-Gonsaud M, Bonnet J. A Modular Receptor Platform To Expand the Sensing Repertoire of Bacteria. ACS Synth Biol 2018; 7:166-175. [PMID: 28946740 PMCID: PMC5880506 DOI: 10.1021/acssynbio.7b00266] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Engineered
bacteria promise to revolutionize diagnostics and therapeutics,
yet many applications are precluded by the limited number of detectable
signals. Here we present a general framework to engineer synthetic
receptors enabling bacterial cells to respond to novel ligands. These
receptors are activated via ligand-induced dimerization
of a single-domain antibody fused to monomeric DNA-binding domains
(split-DBDs). Using E. coli as a model system,
we engineer both transmembrane and cytosolic receptors using a VHH
for ligand detection and demonstrate the scalability of our platform
by using the DBDs of two different transcriptional regulators. We
provide a method to optimize receptor behavior by finely tuning protein
expression levels and optimizing interdomain linker regions. Finally,
we show that these receptors can be connected to downstream synthetic
gene circuits for further signal processing. The general nature of
the split-DBD principle and the versatility of antibody-based detection
should support the deployment of these receptors into various hosts
to detect ligands for which no receptor is found in nature.
Collapse
Affiliation(s)
- Hung-Ju Chang
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| | - Pauline Mayonove
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| | - Agustin Zavala
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| | - Angelique De Visch
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| | - Philippe Minard
- Institute
for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Martin Cohen-Gonsaud
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| | - Jerome Bonnet
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
21
|
Wei TY, Cheng CM. Synthetic Biology-Based Point-of-Care Diagnostics for Infectious Disease. Cell Chem Biol 2017; 23:1056-1066. [PMID: 27662252 DOI: 10.1016/j.chembiol.2016.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 02/09/2023]
Abstract
Infectious diseases outpace all other causes of death in low-income countries, posing global health risks, laying stress on healthcare systems and societies, and taking an avoidable human toll. One solution to this crisis is early diagnosis of infectious disease, which represents a powerful way to optimize treatment, increase patient survival rate, and decrease healthcare costs. However, conventional early diagnosis methods take a long time to generate results, lack accuracy, and are known to seriously underperform with regard to fungal and viral infections. Synthetic biology offers a fast and highly accurate alternative to conventional infectious disease diagnosis. In this review, we outline obstacles to infectious disease diagnostics and discuss two emerging alternatives: synthetic viral diagnostic systems and biosensors. We argue that these synthetic biology-based approaches may overcome diagnostic obstacles in infectious disease and improve health outcomes.
Collapse
Affiliation(s)
- Ting-Yen Wei
- Interdisciplinary Program of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
22
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
23
|
Gui Q, Lawson T, Shan S, Yan L, Liu Y. The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics. SENSORS 2017; 17:s17071623. [PMID: 28703749 PMCID: PMC5539819 DOI: 10.3390/s17071623] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 01/11/2023]
Abstract
Various whole cell-based biosensors have been reported in the literature for the last 20 years and these reports have shown great potential for their use in the areas of pollution detection in environmental and in biomedical diagnostics. Unlike other reviews of this growing field, this mini-review argues that: (1) the selection of reporter genes and their regulatory proteins are directly linked to the performance of celllular biosensors; (2) broad enhancements in microelectronics and information technologies have also led to improvements in the performance of these sensors; (3) their future potential is most apparent in their use in the areas of medical diagnostics and in environmental monitoring; and (4) currently the most promising work is focused on the better integration of cellular sensors with nano and micro scaled integrated chips. With better integration it may become practical to see these cells used as (5) real-time portable devices for diagnostics at the bedside and for remote environmental toxin detection and this in situ application will make the technology commonplace and thus as unremarkable as other ubiquitous technologies.
Collapse
Affiliation(s)
- Qingyuan Gui
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Tom Lawson
- ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Suyan Shan
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Lu Yan
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| |
Collapse
|
24
|
Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity. Anal Bioanal Chem 2016; 408:8859-8868. [DOI: 10.1007/s00216-016-0062-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/29/2016] [Indexed: 11/26/2022]
|
25
|
A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell. Biosens Bioelectron 2016; 85:860-868. [DOI: 10.1016/j.bios.2016.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/27/2016] [Accepted: 06/04/2016] [Indexed: 11/13/2022]
|
26
|
Courbet A, Endy D, Renard E, Molina F, Bonnet J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci Transl Med 2016; 7:289ra83. [PMID: 26019219 DOI: 10.1126/scitranslmed.aaa3601] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Whole-cell biosensors have several advantages for the detection of biological substances and have proven to be useful analytical tools. However, several hurdles have limited whole-cell biosensor application in the clinic, primarily their unreliable operation in complex media and low signal-to-noise ratio. We report that bacterial biosensors with genetically encoded digital amplifying genetic switches can detect clinically relevant biomarkers in human urine and serum. These bactosensors perform signal digitization and amplification, multiplexed signal processing with the use of Boolean logic gates, and data storage. In addition, we provide a framework with which to quantify whole-cell biosensor robustness in clinical samples together with a method for easily reprogramming the sensor module for distinct medical detection agendas. Last, we demonstrate that bactosensors can be used to detect pathological glycosuria in urine from diabetic patients. These next-generation whole-cell biosensors with improved computing and amplification capacity could meet clinical requirements and should enable new approaches for medical diagnosis.
Collapse
Affiliation(s)
- Alexis Courbet
- Sys2Diag FRE3690-CNRS/ALCEDIAG, Cap Delta, 34090 Montpellier, France
| | - Drew Endy
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Eric Renard
- Sys2Diag FRE3690-CNRS/ALCEDIAG, Cap Delta, 34090 Montpellier, France. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital; INSERM 1411 Clinical Investigation Center; Institute of Functional Genomics, CNRS UMR 5203, INSERM U661, University of Montpellier, 34090 Montpellier, France. Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Franck Molina
- Sys2Diag FRE3690-CNRS/ALCEDIAG, Cap Delta, 34090 Montpellier, France.
| | - Jérôme Bonnet
- Sys2Diag FRE3690-CNRS/ALCEDIAG, Cap Delta, 34090 Montpellier, France. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital; INSERM 1411 Clinical Investigation Center; Institute of Functional Genomics, CNRS UMR 5203, INSERM U661, University of Montpellier, 34090 Montpellier, France. Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
27
|
Roda A, Mirasoli M, Michelini E, Di Fusco M, Zangheri M, Cevenini L, Roda B, Simoni P. Progress in chemical luminescence-based biosensors: A critical review. Biosens Bioelectron 2016; 76:164-79. [DOI: 10.1016/j.bios.2015.06.017] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 12/12/2022]
|
28
|
O'Connor G, Knecht LD, Salgado N, Strobel S, Pasini P, Daunert S. Whole-Cell Biosensors as Tools for the Detection of Quorum-Sensing Molecules: Uses in Diagnostics and the Investigation of the Quorum-Sensing Mechanism. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015:181-200. [PMID: 26475469 DOI: 10.1007/10_2015_337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetically engineered bacterial whole-cell biosensors are powerful tools that take advantage of bacterial proteins and pathways to allow for detection of a specific analyte. These biosensors have been employed for a broad range of applications, including the detection of bacterial quorum-sensing molecules (QSMs). Bacterial QSMs are the small molecules bacteria use for population density-dependent communication, a process referred to as quorum sensing (QS). Various research groups have investigated the presence of QSMs, including N-acyl homoserine lactones (AHLs) and autoinducer-2 (AI-2), in physiological samples in attempts to enhance our knowledge of the role of bacteria and QS in disease states. Continued studies in these fields may allow for improved patient care and therapeutics based upon QSMs. Furthermore, bacterial whole-cell biosensors have elucidated the roles of some antibiotics as QS agonists and antagonists. Graphical Abstract.
Collapse
Affiliation(s)
- Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Leslie D Knecht
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Chemistry, University of Miami, Miami, FL, 33146, USA.
| | - Nelson Salgado
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Sebastian Strobel
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Patrizia Pasini
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
29
|
Cell damage detection using Escherichia coli reporter plasmids: fluorescent and colorimetric assays. Arch Microbiol 2015; 197:815-21. [DOI: 10.1007/s00203-015-1119-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/21/2014] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
|
30
|
Weaver AA, Halweg S, Joyce M, Lieberman M, Goodson HV. Incorporating yeast biosensors into paper-based analytical tools for pharmaceutical analysis. Anal Bioanal Chem 2014; 407:615-9. [PMID: 25381614 DOI: 10.1007/s00216-014-8280-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/24/2014] [Accepted: 10/17/2014] [Indexed: 12/23/2022]
Abstract
Paper-based devices serve to address many analytical questions both inside and outside of the laboratory setting. For the first time, yeast is used to construct a whole-cell, paper-based biosensor device. This biologically based paper analytical device (BioPAD) is sensitive to antibiotics in the tetracycline family, and it could potentially address questions of pharmaceutical quality as well as antibiotic contamination in liquids. Our BioPAD can qualitatively discriminate the presence/absence of doxycycline over a range of 30-10,000 μg/mL. In an analysis of a doxycycline dosage form (tablet) commonly used for malaria prophylaxis, BioPADs identified the presence of antibiotic with 92 and 95 % sensitivity, evaluated by eye and computer-assisted image analysis, respectively, with no false positives by either method. BioPADs were found to remain viable for at least 415 days when stored at 4 °C. This research demonstrates the utility of whole yeast cells in paper-based pharmaceutical testing, and it highlights the potential for the development of yeast-based BioPADs to address a range of qualitative analytical questions, especially in low resource settings.
Collapse
Affiliation(s)
- Abigail A Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA,
| | | | | | | | | |
Collapse
|
31
|
Lee JI, Jang JH, Yu MJ, Kim YW. Construction of a bifunctional enzyme fusion for the combined determination of biogenic amines in foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9118-24. [PMID: 24001036 DOI: 10.1021/jf403044m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biogenic amines (BAs) are a group of low-molecular-mass organic bases derived from free amino acids. Due to the undesirable effects of BAs on human health, amine oxidase-based detection methods for BAs in foods have been developed. Here, we developed a bifunctional enzyme fusion (MAPO) using a Cu(2+)-containing monoamine oxidase (AMAO2) and a flavin adenine dinucleotide-containing putrescine oxidase (APUO) from Arthrobacter aurescens. It was necessary to activate MAPO with supplementary Cu(2+) ions, leading to a 6- to 12-fold improvement in catalytic efficiency (kcat/KM) for monoamines. The optimal temperatures of Cu(2+)-activated MAPO (cMAPO) for both tyramine and putrescine were 50 °C, and the optimal pH values for tyramine and putrescine were pH 7.0 and pH 8.0, respectively, consistent with those of AMAO2 and APUO, respectively. The cMAPO showed relative specific activities of 100, 99, 32, and 32 for 2-phenylethylamine, tyramine, histamine, and putrescine, respectively. The tyramine-equivalent BA contents of fermented soybean pastes by cMAPO were more than 90% of the total BA determined by HPLC. In conclusion, cMAPO is fully bifunctional toward biogenic monoamines and putrescine, allowing the combined determination of multiple BAs in foods. This colorimetric determination method could be useful for point-of-care testing to screen safety-guaranteed products prior to instrumental analyses.
Collapse
Affiliation(s)
- Jae-Ick Lee
- Department of Food and Biotechnology, Korea University , Sejong, 339-700, South Korea
| | | | | | | |
Collapse
|
32
|
Michelini E, Cevenini L, Calabretta MM, Spinozzi S, Camborata C, Roda A. Field-deployable whole-cell bioluminescent biosensors: so near and yet so far. Anal Bioanal Chem 2013; 405:6155-63. [DOI: 10.1007/s00216-013-7043-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 12/24/2022]
|
33
|
Kobori S, Ichihashi N, Kazuta Y, Yomo T. A controllable gene expression system in liposomes that includes a positive feedback loop. MOLECULAR BIOSYSTEMS 2013; 9:1282-5. [DOI: 10.1039/c3mb70032a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|