1
|
Rowe C, Santiago N, Warner J, Tsytsarev V, Rozhkova EA, Ngwu-Hyacinth O, Bolding M. Human perception of ionizing radiation. Phys Life Rev 2025; 53:1-21. [PMID: 39987784 DOI: 10.1016/j.plrev.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/25/2025]
Abstract
Here we address the question of whether humans can perceive ionizing radiation. We conducted a thorough review of the clinical and experimental literature related to ionizing radiation, with a focus on its acute effects. Specifically, we examined the three domains of X-ray perception found in animals (abdominal, olfactory, and retinal), which led us to instances of ionizing radiation-induced hearing and taste sensory phenomena in humans thus suggesting that humans can perceive X-rays across various sensory modalities via multiple mechanisms. We also analyzed literature to understand the mechanisms associated with reported symptoms, this led us to the concept of radiomodulation, an understudied modulatory effect of sub-ablative ionizing radiation doses on neurons. Based on this review of the literature we propose the hypothesis that a significant radiomodulation mechanism is the formation of reactive oxygen species from radiolysis which activates immune and sensory signal transduction mechanisms specifically related to the redox activity in TRP and K+ channels. Additionally, we find evidence to support the previous claims of perception stemming from Cherenkov radiation and ozone production which are perceived using canonical sensory modalities. Finally, for we provide a concise summary of the applications of ionizing radiation in clinical imaging and therapy, as well as prospects for future developments of radiation technologies for biomedical and fundamental research.
Collapse
Affiliation(s)
- Caleb Rowe
- Department of Surgery, University of Alabama at Birmingham, United States
| | - Nathan Santiago
- Department of Immunology, University of Alabama at Birmingham, United States
| | - Jeffrey Warner
- Department of Ophthalmology, University of Alabama at Birmingham, United States
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, United States
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, United States
| | | | - Mark Bolding
- Department of Radiology, University of Alabama at Birmingham, United States.
| |
Collapse
|
2
|
Lyggitsou G, Barda C, Anagnostou M, Douros A, Statha D, Karampasi C, Papantonaki AI, Svoliantopoulos I, Sfiniadakis I, Vitsos A, Skaltsa H, Rallis MC. Wound Healing Potential of Herbal Hydrogel Formulations of Cedrus brevifolia Extracts in Mice. Gels 2024; 10:750. [PMID: 39590106 PMCID: PMC11593687 DOI: 10.3390/gels10110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Wound healing stands as a paramount therapeutic pursuit, imposing significant challenges on healthcare, particularly for vulnerable populations. Cedrus brevifolia, a species endemic to Cyprus, thrives in the Tripylos region, commonly known as Cedar Valley, within the Paphos forest. Despite its endemism, this species exhibits negligible genetic divergence from its Mediterranean related species. This study aims to investigate the potential of C. brevifolia resin and bark extracts in promoting wound healing in a mouse model. Previous in vitro investigations have elucidated the antioxidant and anti-inflammatory potential of extracts and isolates derived from the title plant, warranting further exploration in an in vivo setting. This experimental design employed 40 male SKH-hr2 black and brown mice aged 2-4 months. Wounds measuring 1 cm2 were meticulously induced in the anesthetized mice and the potential healing effect of the herbal hydrogel formulations was evaluated. The healing potential of the C. brevifolia extracts was rigorously assessed through the daily application of gel formulations containing resin concentrations of 5% and 10% w/w, alongside sapwood and heartwood extracts at concentrations of 0.5% and 1% w/w. The evaluation of the treatments encompassed a multifaceted approach, incorporating clinical observations, skin biophysical parameter assessments utilizing an Antera 3D camera, and FT-IR spectroscopy, in addition to histopathological examination. The chemical compositions were also investigated through NMR and bio-guided isolation. The most prominent herbal hydrogel preparation proved to be the 10% resin, followed by the sapwood at 1%. The chemical analysis unveiled abietic acid, manool, and lariciresinol derivatives that potentially contributed to the observed results. Bridging the gap between in vitro observations and in vivo outcomes attempts to shed light on the potential therapeutic benefits of C. brevifolia hydrogels in wound care.
Collapse
Affiliation(s)
- Georgia Lyggitsou
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Christina Barda
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria Anagnostou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Andreas Douros
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Dimitra Statha
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Christina Karampasi
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Anastasia Ioanna Papantonaki
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Ioannis Svoliantopoulos
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | | | - Andreas Vitsos
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Helen Skaltsa
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Michail Ch. Rallis
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| |
Collapse
|
3
|
Kinali H, Kalaycioglu GD, Boyacioglu O, Korkusuz P, Aydogan N, Vargel I. Clinic-oriented injectable smart material for the treatment of diabetic wounds: Coordinating the release of GM-CSF and VEGF. Int J Biol Macromol 2024; 276:133661. [PMID: 38992546 DOI: 10.1016/j.ijbiomac.2024.133661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Chronic wounds are often caused by diabetes and present a challenging clinical problem due to vascular problems leading to ischemia. This inhibits proper wound healing by delaying inflammatory responses and angiogenesis. To address this problem, we have developed injectable particle-loaded hydrogels which sequentially release Granulocyte-macrophage- colony-stimulating-factor (GM-CSF) and Vascular endothelial growth factor (VEGF) encapsulated in polycaprolactone-lecithin-geleol mono-diglyceride hybrid particles. GM-CSF promotes inflammation, while VEGF facilitates angiogenesis. The hybrid particles (200-1000 nm) designed within the scope of the study can encapsulate the model proteins Bovine Serum Albumin 65 ± 5 % and Lysozyme 77 ± 10 % and can release stably for 21 days. In vivo tests and histological findings revealed that in the hydrogels containing GM-CSF/VEGF-loaded hybrid particles, wound depth decreased, inflammation phase increased, and fibrotic scar tissue decreased, while mature granulation tissue was formed on day 10. These findings confirm that the hybrid particles first initiate the inflammation phase by delivering GM-CSF, followed by VEGF, increasing the number of vascularization and thus increasing the healing rate of wounds. We emphasize the importance of multi-component and sequential release in wound healing and propose a unifying therapeutic strategy to sequentially deliver ligands targeting wound healing stages, which is very important in the treatment of the diabetic wounds.
Collapse
Affiliation(s)
- Hurmet Kinali
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Gokce Dicle Kalaycioglu
- Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Ozge Boyacioglu
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Atılım University, 06830 Gölbaşı, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
| | - Nihal Aydogan
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey; Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara 06800, Turkey.
| | - Ibrahim Vargel
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey; Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hacettepe University, 06560 Ankara, Turkey.
| |
Collapse
|
4
|
Khachatryan G, Pląder J, Piechowicz K, Witczak T, Liszka-Skoczylas M, Witczak M, Gałkowska D, Duraczyńska D, Hunter W, Waradzyn A, Khachatryan K. Preparation and Study of the Physicochemical and Functional Properties of Nano/Micromicellar Structures Containing Chokeberry Fruit Pomace Extracts Using Egg White and Egg Yolk. Int J Mol Sci 2024; 25:8405. [PMID: 39125974 PMCID: PMC11312911 DOI: 10.3390/ijms25158405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
There is currently a growing interest in health-promoting foods. The beneficial effects of food on human health are actively promoted by health professionals and nutritionists. This growing awareness is influencing the increasing range of functional foods and the pursuit of more innovative solutions. Recent research indicates that spherical nanoparticles have the potential to be used as functional biomaterials in the food industry, particularly for encapsulating hydrophobic natural phytochemicals. Techniques and systems based on micro- and nano-encapsulation are of great importance in the food and pharmaceutical industries. It is of paramount importance that encapsulation materials are safe for use in food. The aim of this study was to obtain micelles containing extracts from chokeberry fruit pomace using egg yolk powder (EYP) for emulsification (as a source of lecithin) and egg white powder (EWP) for stabilisation. The structural properties of the micelles in the resulting powders were characterised using Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) analysis confirmed the presence of spherical micellar structures between 500 and 1000 nm in size. The water activity and water content of the obtained powders were determined, and the thermal (DSC) and antioxidant properties were investigated. The results indicated that the powder with the micellar structures had a higher stability compared to the powder obtained by simple mixing without the use of encapsulation techniques.
Collapse
Affiliation(s)
- Gohar Khachatryan
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (G.K.); (D.G.)
| | - Julia Pląder
- Scientific Circle of Food Technologists, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (J.P.); (K.P.); (W.H.); (A.W.)
| | - Karolina Piechowicz
- Scientific Circle of Food Technologists, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (J.P.); (K.P.); (W.H.); (A.W.)
| | - Teresa Witczak
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Marta Liszka-Skoczylas
- Department of Engineering and Machinery for Food Industry, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland (M.W.)
| | - Mariusz Witczak
- Department of Engineering and Machinery for Food Industry, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland (M.W.)
| | - Dorota Gałkowska
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (G.K.); (D.G.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland;
| | - Walter Hunter
- Scientific Circle of Food Technologists, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (J.P.); (K.P.); (W.H.); (A.W.)
| | - Aleksandra Waradzyn
- Scientific Circle of Food Technologists, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (J.P.); (K.P.); (W.H.); (A.W.)
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| |
Collapse
|
5
|
Bediako JK, Kudoahor E, Lim CR, Affrifah NS, Kim S, Song MH, Repo E. Exploring the insights and benefits of biomass-derived sulfuric acid activated carbon for selective recovery of gold from simulated waste streams. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:135-145. [PMID: 38325014 DOI: 10.1016/j.wasman.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/06/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
The surging affluent in society, concomitant with increasing global demand for electrical and electronic devices, has led to a sharp rise in e-waste generation. E-wastes contain significant amounts of precious metals, such as gold, which can be recovered and reused, thus reducing the environmental impact of mining new metals. Selective recovery using sustainable and cost-effective materials and methods is therefore vital. This study undertook a detailed evaluation of low-cost biomass-derived activated carbon (AC) for selective recovery of Au from simulated e-waste streams. Utilizing high-performance synthesized H2SO4-AC, the adsorption mechanisms were explicated through a combination of characterization techniques, i.e., FE-SEM, BET, TGA, XRD, FTIR, XPS, and DFT simulations to conceptualize the atomic and molecular level interactions. Optimization of coordination geometries between model H2SO4-AC and anionic complexes revealed the most stable coordination for AuCl4- (binding energy, Eb = -4064.15 eV). The Au selectivity was further enhanced by reduction of Au(III) to Au(0), as determined by XRD and XPS. The adsorption reaction was relatively fast (∼5h), and maximum Au uptake reached 1679.74 ± 37.66 mg/g (among highest), achieved through adsorption isotherm experiments. Furthermore, a mixture of 0.5 M thiourea/1 M HCl could effectively elute the loaded Au and regenerate the spent AC. This study presents radical attempts to examine in detail, the synergistic effects of H2SO4 activation on biomass-derived ACs for selective recovery of Au from complex mixtures. The paper therefore describes a novel approach for the selective recovery of Au from e-wastes using multifunctional biomass-derived H2SO4-AC.
Collapse
Affiliation(s)
- John Kwame Bediako
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850, Lappeenranta, Finland; Department of Food Process Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Enoch Kudoahor
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Che-Ryong Lim
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Nicole Sharon Affrifah
- Department of Food Process Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana
| | - Sok Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Myung-Hee Song
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850, Lappeenranta, Finland
| |
Collapse
|
6
|
Inman JL, Wu Y, Chen L, Brydon E, Ghosh D, Wan KH, De Chant J, Obst-Huebl L, Nakamura K, Ralston CY, Celniker SE, Mao JH, Zwart PH, Holman HYN, Chang H, Brown JB, Snijders AM. Long-term, non-invasive FTIR detection of low-dose ionizing radiation exposure. Sci Rep 2024; 14:6119. [PMID: 38480827 PMCID: PMC10937999 DOI: 10.1038/s41598-024-56491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
Non-invasive methods of detecting radiation exposure show promise to improve upon current approaches to biological dosimetry in ease, speed, and accuracy. Here we developed a pipeline that employs Fourier transform infrared (FTIR) spectroscopy in the mid-infrared spectrum to identify a signature of low dose ionizing radiation exposure in mouse ear pinnae over time. Mice exposed to 0.1 to 2 Gy total body irradiation were repeatedly measured by FTIR at the stratum corneum of the ear pinnae. We found significant discriminative power for all doses and time-points out to 90 days after exposure. Classification accuracy was maximized when testing 14 days after exposure (specificity > 0.9 with a sensitivity threshold of 0.9) and dropped by roughly 30% sensitivity at 90 days. Infrared frequencies point towards biological changes in DNA conformation, lipid oxidation and accumulation and shifts in protein secondary structure. Since only hundreds of samples were used to learn the highly discriminative signature, developing human-relevant diagnostic capabilities is likely feasible and this non-invasive procedure points toward rapid, non-invasive, and reagent-free biodosimetry applications at population scales.
Collapse
Affiliation(s)
- Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Yulun Wu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Liang Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Ella Brydon
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Dhruba Ghosh
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
| | - Kenneth H Wan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Jared De Chant
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Lieselotte Obst-Huebl
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Kei Nakamura
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Corie Y Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Peter H Zwart
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Hoi-Ying N Holman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| | - James B Brown
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
- Department of Statistics, University of California, Berkeley, CA, 94720, USA.
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
Changez M, Anwar MF, Alrahbi H. Olive Oil-Based Reverse Microemulsion for Stability and Topical Delivery of Methotrexate: In Vitro. ACS OMEGA 2024; 9:7012-7021. [PMID: 38371785 PMCID: PMC10870400 DOI: 10.1021/acsomega.3c08875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Hydrolysis of pharmaceutically active molecules can be in control under a confined environment of water-in-oil microemulsion. Stability of model drug methotrexate (MTX) in a sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and olive oil microemulsion system has been evaluated. The physicochemical properties of AOT-MTX-water-olive oil reverse microemulsion (MTX-RM) were examined by UV-vis, Fourier transform infrared, and X-ray diffraction techniques, and the hydrodynamic size was determined by dynamic light scattering techniques and morphologies were characterized by a transmission electron microscope and atomic force microscope. In vitro permeation of MTX-RM through treated skin and its mechanism are evaluated by a UV-visible spectrophotometer, confocal laser scanning microscope, differential scanning calorimeter, and attenuated total reflecting infrared spectroscopy (ATR). The interaction of MTX with the AOT headgroup in confined environment RM enhanced the stability of MTX without affecting the molecular integrity at room temperature. Chemical stability of MTX in MTX-RM (W0 = 5) is significantly higher (∼97%) at room temperature for the study period of 1 year than in MTX-RM (W0 = 15) (∼72%). Interaction of MTX with the AOT headgroup is also visualized by a high-resolution transmission electron microscope and is in correlation with FT-IR data of MTX-RM. The skin fluxes of MTX are 15.1, 19.75, and 22.75 times higher at water content (W0) of 5, 10, and 15, respectively, in MTX-RM in comparison to aqueous solution of MTX. The enhanced amounts of the MTX were detected using CLSM in hair follicles, sweat glands, and epidermis layer of the skin. Merging of T2, T3, and T4 thermal peaks in one broad peak in treated skin endothermograph shows that carrier MTX-RM affects the lipid as well protein structure of the treated skin. ATR data of treated skin showed an increase in the intensity of the carbonyl peak at 1750 cm-1 (lipid), shifting of the amide II peaks, and separation of peaks in the range of 1060 to 1000 cm-1 (vibration mode of -CH2OH, C-O stretching, and C-OH bending peak of the carbohydrate) in comparison to control skin, which indicates that MTX-RM interacts with glycolipid and glycoprotein through carbohydrate hydroxy groups.
Collapse
Affiliation(s)
- Mohammad Changez
- College
of Health Science, University of Buraimi, Al Buraimi 512, Oman
| | - Mohammad Faiyaz Anwar
- Department
of Microbiology, All Indian Institute of
Medical Sciences AIIMS, New Delhi 110608, India
| | - Hilal Alrahbi
- College
of Health Science, University of Buraimi, Al Buraimi 512, Oman
| |
Collapse
|
8
|
Yang N, Venezuela J, Allavena R, Lau C, Dargusch M. Zinc-based subcuticular absorbable staples: An in vivo and in vitro study. Acta Biomater 2023:S1742-7061(23)00355-0. [PMID: 37369266 DOI: 10.1016/j.actbio.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/23/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
A zinc-nutrient element alloy (Zn-1.0Cu-0.5Ca) was developed into subcuticular absorbable staples (SAS) as a robust alternative to the commercially available poly(l-lactide-co-glycolide) (PLGA) SAS for the first time. The fixation properties of the Zn SAS were measured via pull-out tests and in-situ lap-shear pull-out test comparatively against the PLGA SAS. The Zn SAS exhibited fixation force of 18.9±0.2 N, which was over three times higher than that of PLGA SAS (5.5±0.1 N). The Zn SAS was used to close incision wounds in a SD rat model for biodegradability and biocompatibility characterisation at 1, 4 and 12 weeks. The Zn SAS showed uniform degradation behaviour after in vivo implantation at the average rate of 198±54, 112±28, and 70±24 μm/y after 1, 4, and 12 weeks, which reduced the fixation force to 16.8±1.1 N, 15.4±0.9 N, 12.7±0.7 N, respectively. These findings showed the potential of the Zn SAS for the closure of heavy loading and slowing healing tissues. The Zn SAS enabled successful closure and healing of the incision wound, similar to the PLGA staples. However, the slow long-term degradation rate of the Zn SAS may lead to unnecessary implant retention. In addition, the alloy SAS resulted in higher local foreign body responses due to their stiffness. Reducing the implant cross-section profile and applying low stiffness and a corrosion-accelerating coating are suggested as possible approaches to reduce post-service implant retention and improve the biocompatibility of the Zn SAS. STATEMENT OF SIGNIFICANCE: This work reports the fabrication of the first metallic subcuticular absorbable staples (SAS) made from Zn-Cu-Ca alloy for skin wound closure applications. The Zn-based SAS were characterised in vitro and in vivo (SD rat model) for biodegradability, fixation properties, biocompatibility and inflammatory responses, which were compared against the commercially available PLGA-based SAS. The Zn-based SAS provided a secure attachment of the full-thickness wounds on SD rats and allowed successful healing during the 12-week service period. In addition, the in vitro results showed that the Zn-based SAS provided more than three times higher fixation strength than the commercial PLGA, indicating the potential of the Zn-based SAS for load-bearing wound closure application.
Collapse
Affiliation(s)
- Nan Yang
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia QLD 4072, Australia
| | - Jeffrey Venezuela
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia QLD 4072, Australia
| | - Rachel Allavena
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Cora Lau
- The University of Queensland, Biological Resources, Brisbane, QLD, 4072, Australia
| | - Matthew Dargusch
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering, Advanced Engineering Building, Bld 49, The University of Queensland, Staff House Rd, St Lucia QLD 4072, Australia.
| |
Collapse
|
9
|
Altamimi M, Hussain A, Mahdi WA, Imam SS, Alshammari MA, Alshehri S, Khan MR. Mechanistic Insights into Luteolin-Loaded Elastic Liposomes for Transdermal Delivery: HSPiP Predictive Parameters and Instrument-Based Evidence. ACS OMEGA 2022; 7:48202-48214. [PMID: 36591170 PMCID: PMC9798756 DOI: 10.1021/acsomega.2c06288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
We evaluated mechanistic insights into luteolin (LUT)-loaded elastic liposomes (OLEL1) permeated across rat skin. HSPiP software-based parameters, thermal analysis, infrared analysis, and morphological evaluations were employed to understand mechanistic observations of drug permeation and deposition. HSPiP provided HSP values (δd, δp, and δh) of OLEL1 (based on composition), LUT, excipients, and rat skin (literature value and by-default value). Rat skin was studied via Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), fluorescence microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM) studies. The δd and δh estimation of the skin and phosphatidylcholine showed close relation in terms of δd and δh. Similarly, OLEL1 and the skin might interact with each other mainly through δd and δp forces as evidenced by the predicted values. The untreated skin showed characteristic stretching and vibrations as compared to lower frequencies caused by OLEL1. DSC showed changes in the thermal behavior of the skin after OLEL1 treatment as compared to the untreated skin. Visualization of these changes was evident under fluorescence microscopy and SEM for confirmed substantial reversible surface perturbation of the skin protein layer for improved vesicle permeation and subsequent internalization with the inner skin matrix. The AFM study confirmed the nanoscale surface roughness variation caused substantially by OLEL1 and OLEL1 placebo as compared to the untreated control and drug solution. Thus, the study clearly demonstrated mechanistic insights into LUT-loaded vesicles across rat skin for enhanced permeation and drug deposition.
Collapse
Affiliation(s)
- Mohammad
A. Altamimi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
- . Phone: +966564591584
| | - Wael A. Mahdi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Sarim Imam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Musaad A. Alshammari
- Department
of Pharmacology, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department
of Pharmacology, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Campanholi KDSS, Junior RCDS, Jaski JM, da Silva JB, de Oliveira MC, dos Santos RS, Pozza MSDS, de Castro-Hoshino LV, Baesso ML, Cardozo-Filho L, Bruschi ML, Caetano W. Thermo and Photoresponsive Emulgel Loaded with Copaifera reticulata Ducke and Chlorophylls: Rheological, Mechanical, Photodynamic and Drug Delivery Properties in Human Skin. Pharmaceutics 2022; 14:pharmaceutics14122798. [PMID: 36559290 PMCID: PMC9785550 DOI: 10.3390/pharmaceutics14122798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, the number of new cases of cutaneous leishmaniasis has been of concern among health agencies. Research that offers new therapeutic alternatives is advantageous, especially those that develop innovative drugs. Therefore, this paper presents the incorporation of Copaifera reticulata Ducke and chlorophyll extract into Pluronic®® F127 and Carbopol gels, under optimized polymer quantities. The chlorophyll extract (rich in photosensitizing compounds) was obtained by continuous-flow pressurized liquid extraction (PLE), a clean, environmentally friendly method. The system aims to act as as a leishmanicidal, cicatrizant, and antibiotic agent, with reinforcement of the photodynamic therapy (PDT) action. Rheological and mechanical analyses, permeation studies and bioadhesiveness analyses on human skin, and PDT-mediated activation of Staphylococcus aureus were performed. The emulgels showed gelation between 13° and 15 °C, besides pseudoplastic and viscoelastic properties. Furthermore, the systems showed transdermal potential, by releasing chlorophylls and C. reticulata Ducke into the deep layers of human skin, with good bioadhesive performance. The application of PDT reduced three logarithmic colony-forming units of S. aureus bacteria. The results support the potential of the natural drug for future clinical trials in treating wounds and cutaneous leishmania.
Collapse
Affiliation(s)
- Katieli da Silva Souza Campanholi
- Chemistry Department, State University of Maringá, Maringá 87020-900, Brazil
- Correspondence: (K.d.S.S.C.); (W.C.); Tel.: +55-44-3011-5153 (K.d.S.S.C. & W.C.)
| | | | | | - Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, Brazil
| | - Mariana Carla de Oliveira
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, Brazil
| | - Rafaela Said dos Santos
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, Brazil
| | | | | | | | - Lucio Cardozo-Filho
- Chemical Engineering Department, State University of Maringá, Maringá 87020-900, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, Brazil
| | - Wilker Caetano
- Chemistry Department, State University of Maringá, Maringá 87020-900, Brazil
- Correspondence: (K.d.S.S.C.); (W.C.); Tel.: +55-44-3011-5153 (K.d.S.S.C. & W.C.)
| |
Collapse
|
11
|
Rodzik A, Railean V, Pomastowski P, Žuvela P, Wong MW, Buszewski B. The influence of zinc ions concentration on β-lactoglobulin structure – physicochemical properties of Zn–β-lactoglobulin complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Production and Characterization of a Novel Exopolysaccharide from Ramlibacter tataouinensis. Molecules 2022; 27:molecules27217172. [PMID: 36364003 PMCID: PMC9658432 DOI: 10.3390/molecules27217172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022] Open
Abstract
The current study examines the desiccation-resistant Ramlibacter tataouinensis TTB310T as a model organism for the production of novel exopolysaccharides and their structural features. This bacterium is able to produce dividing forms of cysts which synthesize cell-bound exopolysaccharide. Initial experiments were conducted on the enrichment of cyst biomass for exopolysaccharide production under batch-fed conditions in a pilot-scale bioreactor, with lactate as the source of carbon and energy. The optimized medium produced significant quantities of exopolysaccharide in a single growth phase, since the production of exopolysaccharide took place during the division of the cysts. The exopolysaccharide layer was extracted from the cysts using a modified trichloroacetic acid method. The biochemical characterization of purified exopolysaccharide was performed by gas chromatography, ultrahigh-resolution mass spectrometry, nuclear magnetic resonance, and Fourier-transform infrared spectrometry. The repeating unit of exopolysaccharide was a decasaccharide consisting of ribose, glucose, rhamnose, galactose, mannose, and glucuronic acid with the ratio 3:2:2:1:1:1, and additional substituents such as acetyl, succinyl, and methyl moieties were also observed as a part of the exopolysaccharide structure. This study contributes to a fundamental understanding of the novel structural features of exopolysaccharide from a dividing form of cysts, and, further, results can be used to study its rheological properties for various industrial applications.
Collapse
|
13
|
Rodzik A, Król-Górniak A, Railean V, Sugajski M, Gołębiowski A, Horne DS, Michalke B, Sprynskyy M, Pomastowski P, Buszewski B. Study on zinc ions binding to the individual casein fractions: α-, β- and κ-casein. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Rodzik A, Railean V, Pomastowski P, Žuvela P, Wong MW, Sprynskyy M, Buszewski B. Study on silver ions binding to β-lactoglobulin. Biophys Chem 2022; 291:106897. [DOI: 10.1016/j.bpc.2022.106897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
|
15
|
da Silva Souza Campanholi K, Sonchini Gonçalves R, Bassi da Silva J, Said dos Santos R, Carla de Oliveira M, Barbosa de Souza Ferreira S, Vizioli de Castro-Hoshino L, Bento Balbinot R, Lazarin-Bidóia D, Luciano Baesso M, Luciano Bruschi M, Vataru Nakamura C, Caetano W. Thermal stimuli-responsive topical platform based on copaiba oil-resin: Design and performance upon ex-vivo human skin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Lim HJ, Jin H, Chua B, Son A. Clustered Detection of Eleven Phthalic Acid Esters by Fluorescence of Graphene Quantum Dots Displaced from Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4186-4196. [PMID: 35029109 DOI: 10.1021/acsami.1c21756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A gold nanoparticle-quenched graphene quantum dot-based aptasensor was developed to perform clustered detection of 11 phthalic acid esters (PAEs). The binding of the target PAEs to the aptasensor frees the graphene quantum dots that are otherwise quenched by the carrier gold nanoparticle. The resultant fluorescence upon excitation is proportional to the number of freed graphene quantum dots and hence the target PAE concentration. The synthesis of the proposed aptasensor was first verified step-by-step via FT-IR measurement, scanning electron microscopy, and fluorescence measurement. Selectivity was evaluated for individual and combined target PAEs and compared against seven non-PAE endocrine disrupting compounds. The proposed aptasensor successfully quantified 11 PAEs in test samples with varying concentrations of 0.001-50 ng PAEs/mL and demonstrated a limit of detection of ∼4 pg./mL. Finally, the AuNP-gQD aptasensor was employed to detect multiple combinations of commonly regulated PAEs (DBP, DIBP, DEHP, and BBP). The recovery (%) for all four PAEs combination in environmentally relevant concentrations of 0.5, 1, 5, and 10 ng/mL were ∼100%.
Collapse
Affiliation(s)
- Hyun Jeong Lim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department of Environmental Science and Engineering, Ewha Womans Universty, Seoul 03760, Republic of Korea
| | - Hyowon Jin
- Department of Environmental Science and Engineering, Ewha Womans Universty, Seoul 03760, Republic of Korea
| | - Beelee Chua
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans Universty, Seoul 03760, Republic of Korea
| |
Collapse
|
17
|
Sudhakar K, Mishra V, Jain S, Rompicherla NC, Malviya N, Tambuwala MM. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin. Int J Pharm 2021; 610:121226. [PMID: 34710540 DOI: 10.1016/j.ijpharm.2021.121226] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
Abstract
The skin embodies a relatively large and readily accessible surface area to absorb a drug through a non-invasive procedure. The vesicular carrier systems such as liposomes, ethosomes, and transethosomes have been explored as non-invasive systems for transdermal delivery of drugs. In the present study, different vesicular carriers were prepared by the thin-film hydration method with modification, and various parameters like size, elasticity, and release profiles were evaluated. Ethosomes and transethosomes have shown the smaller size of 362.21 ± 55.76 and 314.34 ± 41.21 nm, with deformity of 19.34% and 25.04%, respectively, compared with liposomes. The FTIR study of the skin before and after the application of vesicular formulation was performed. The ethosomes and transethosomes changed the orthorhombic phase to the liquid crystalline phase to move the vesicular carrier with the drug to cross the stratum corneum (SC) of the skin. The thermotropic behaviour of drug and vesicular carrier ingredients was studied using differential scanning calorimetry (DSC). Fluorescence images of vesicular-skin permeation have revealed that ethosome and transethosome formulation have shown deeper penetration across the SC and epidermis. The in vitro drug release from the ethosomes and transethosomes has shown 93.34 ± 1.23% and 95.45 ± 2.67% of drug release using Franz diffusion cell and porcine skin as a membrane. The nanostructured flexible vesicular carrier containing ethanol alone and a combination of ethanol and edge activator is a perfect carrier for drug penetration to the deeper skin layer and maintaining the sustained release of drug for a prolonged time.
Collapse
Affiliation(s)
- Kalvatala Sudhakar
- Smriti College of Pharmaceutical Education, Indore, MP, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Sanjay Jain
- Department of Pharmacy, Medicaps University, Indore, MP, India
| | - Narayana Charyulu Rompicherla
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru, (Karnataka), India
| | - Neelesh Malviya
- Smriti College of Pharmaceutical Education, Indore, MP, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, United Kingdom.
| |
Collapse
|
18
|
Licursi V, Wang W, Di Nisio E, Cammarata FP, Acquaviva R, Russo G, Manti L, Cestelli Guidi M, Fratini E, Kamel G, Amendola R, Pisciotta P, Negri R. Transcriptional modulations induced by proton irradiation in mice skin in function of adsorbed dose and distance. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2021. [DOI: 10.1080/16878507.2021.1949675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Valerio Licursi
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy
| | - Wei Wang
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy
| | - Elena Di Nisio
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy
| | - Francesco P. Cammarata
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR) , CNR, Cefalù (PA), Italy
- Laboratori Nazionali del Sud, INFN, Catania, Italy
| | - Rosaria Acquaviva
- Laboratori Nazionali del Sud, INFN, Catania, Italy
- Department of Drug and Health Science, Biochemistry section, University of Catania, Catania, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR) , CNR, Cefalù (PA), Italy
- Laboratori Nazionali del Sud, INFN, Catania, Italy
| | - Lorenzo Manti
- Department of Physics “E. Pancini” University of Naples Federico II, University of Naples Federico II, Naples, Italy
- Section of Naples, INFN, Naples, Italy
| | | | - Emiliano Fratini
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Gihan Kamel
- SESAME (Synchrotron - Light for Experimental Science and Applications in the Middle East), Allan, Jordan
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Roberto Amendola
- SSPT-TECS-SAM, CR Casaccia, ENEA, SSPT-TECS-SAM, CR Casaccia, Rome, Italy
| | - Pietro Pisciotta
- Institute of Molecular Bioimaging and Physiology (IBFM-CNR) , CNR, Cefalù (PA), Italy
- Laboratori Nazionali del Sud, INFN, Catania, Italy
- Department of Radiotherapy, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Rodolfo Negri
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
de Oliveira ÉL, Ferreira SBS, de Castro-Hoshino LV, Campanholi KDSS, Calori IR, de Morais FAP, Kimura E, da Silva Junior RC, Bruschi ML, Sato F, Hioka N, Caetano W. Thermoresponsive Hydrogel-Loading Aluminum Chloride Phthalocyanine as a Drug Release Platform for Topical Administration in Photodynamic Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3202-3213. [PMID: 33682407 DOI: 10.1021/acs.langmuir.1c00148] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phthalocyanine aluminum chloride (Pc) is a clinically viable photosensitizer (PS) to treat skin lesions worsened by microbial infections. However, this molecule presents a high self-aggregation tendency in the biological fluid, which is an in vivo direct administration obstacle. This study proposed the use of bioadhesive and thermoresponsive hydrogels comprising triblock-type Pluronic F127 and Carbopol 934P (FCarb) as drug delivery platforms of Pc (FCarbPc)-targeting topical administration. Carbopol 934P was used to increase the F127 hydrogel adhesion on the skin. Rheological analyses showed that the Pc presented a low effect on the hydrogel matrix, changing the gelation temperature from 27.2 ± 0.1 to 28.5 ± 0.9 °C once the Pc concentration increases from zero to 1 mmol L-1. The dermatological platform showed matrix erosion effects with the release of loaded Pc micelles. The permeation studies showed the excellent potential of the FCarb platform, which allowed the partition of the PS into deeper layers of the skin. The applicability of this dermatological platform in photodynamic therapy was evaluated by the generation of reactive species which was demonstrated by chemical photodynamic efficiency assays. The low effect on cell viability and proliferation in the dark was demonstrated by in vitro assays using L929 fibroblasts. The FCarbPc fostered the inhibition of Staphylococcus aureus strain, therefore demonstrating the platform's potential in the treatment of dermatological infections of microbial nature.
Collapse
Affiliation(s)
- Évelin L de Oliveira
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná 87020-900, Brazil
| | - Sabrina B S Ferreira
- Department of Pharmacy, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná 87020-900, Brazil
| | - Lidiane V de Castro-Hoshino
- Department of Physics, Photothermal Phenomenon Research Group, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná 87020-900, Brazil
| | - Katieli da S S Campanholi
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná 87020-900, Brazil
| | - Italo R Calori
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná 87020-900, Brazil
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Flávia A P de Morais
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná 87020-900, Brazil
| | - Elza Kimura
- Department of Pharmacy, Clinical Research and Bioequivalence Center, State University of Maringá, Avenue Mandacaru 1590, Maringá, Paraná 87083-240, Brazil
| | - Ranulfo C da Silva Junior
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná 87020-900, Brazil
| | - Marcos L Bruschi
- Department of Pharmacy, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná 87020-900, Brazil
| | - Francielle Sato
- Department of Physics, Photothermal Phenomenon Research Group, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná 87020-900, Brazil
| | - Noboru Hioka
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná 87020-900, Brazil
| | - Wilker Caetano
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná 87020-900, Brazil
| |
Collapse
|
20
|
Bediako JK, Choi JW, Song MH, Lim CR, Yun YS. Self-coagulating polyelectrolyte complexes for target-tunable adsorption and separation of metal ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123352. [PMID: 32659579 DOI: 10.1016/j.jhazmat.2020.123352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Metal-containing wastes in aquatic environments lead to public health hazards and valuable resource lose. Metal-bearing wastewater must be treated to remove heavy metals or recover precious metals. To achieve these, target-tunable adsorbents that bind cationic and anionic metal species were developed through facile polyelectrolyte complexation using polyethylenimine (PEI) and polyacrylic acid (PAA). Utilizing the properties of the two polyelectrolytes and pKa variabilities, stable tunable adsorbents were fabricated in water without additional solvents. The homogenous complex adsorbents were strategically synthesized via dissolution in 0.1 M NaOH and drop-wise addition of 1 M HCl, followed by crosslinking with glutaraldehyde. Consequently, the adsorbents in alternating weight ratios of 4:1 and 1:4 (PEI:PAA) exhibited good tunability and adsorption properties. The maximum single metal adsorption capacities were 1609.7 ± 49.6 and 558.6 ± 9.67 mg/g for gold and cadmium, respectively. The pseudo-second-order model fitted the kinetics data more appropriately and was recognized as the rate controlling step. In a binary mixture, gold selectivity was observed to be influenced by adsorption-reduction mechanism, which was elucidated by XRD and XPS. Moreover, the adsorbents demonstrated NO3- sequestration properties, a feat deemed important for environmental remediation of nitrate ions. Finally, sequential separation was achieved with ethylenediaminetetraacetic acid (EDTA) and acidified thiourea.
Collapse
Affiliation(s)
- John Kwame Bediako
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University (Formerly Chonbuk National University), Jeonju, Jeonbuk, 561-756, Republic of Korea; School of Engineering Sciences, University of Ghana, Legon, Ghana
| | - Jong-Won Choi
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University (Formerly Chonbuk National University), Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Myung-Hee Song
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University (Formerly Chonbuk National University), Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Che-Ryong Lim
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University (Formerly Chonbuk National University), Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Yeoung-Sang Yun
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University (Formerly Chonbuk National University), Jeonju, Jeonbuk, 561-756, Republic of Korea.
| |
Collapse
|
21
|
Mabwa D, Kubiena T, Parnell H, Su R, Furniss D, Tang Z, Leach R, Benson TM, Scotchford CA, Seddon AB. Evaluating the cytotoxicity of Ge–Sb–Se chalcogenide glass optical fibres on 3T3 mouse fibroblasts. RSC Adv 2021; 11:8682-8693. [PMID: 35423389 PMCID: PMC8695193 DOI: 10.1039/d0ra00353k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/02/2021] [Indexed: 01/17/2023] Open
Abstract
In vivo cancer detection based on the mid-infrared molecular fingerprint of tissue is promising for the fast diagnosis and treatment of suspected cancer patients. Few materials are mid-infrared transmissive, even fewer, which can be converted into functional, low-loss optical fibres for in vivo non-invasive testing. Chalcogenide-based glass optical fibres are, however, one of the few. These glasses are transmissive in the mid-infrared and are currently under development for use in molecular sensing devices. The cytotoxicity of these materials is however unknown. The cytotoxicity of Ge–Sb–Se chalcogenide optical glass fibres on 3T3 mouse fibroblast cells is here investigated. Fibres exposed to four different pre-treatment conditions are used: as-drawn (AD), propylamine-etched (PE), oxidised-and-washed (OW) and oxidised (Ox). To achieve the latter two conditions, fibres are treated with H2O2(aqueous (aq.)) and dried to produce a surface oxide layer; this is either washed off (OW) or left on the glass surface (Ox). Cellular response is investigated via 3 day elution and 14 day direct contact trials. The concentration of the metalloids (Ge, Sb and Se) in each leachate was measured via inductively coupled plasma mass spectrometry. Cell viability is assessed using the neutral red assay and scanning electron microscopy. The concentration of Ge, Sb and Se ions after a 3 day dissolution was as follows. In AD leachates, Ge: 0.40 mg L−1, Sb: 0.17 mg L−1, and Se: 0.06 mg L−1. In PE leachates, Ge: 0.22 mg L−1, Sb: 0.15 mg L−1, and Se: 0.02 mg L−1. In Ox leachates, Ge: 823.8 mg L−1, Sb: 2586.6 mg L−1, and Se: 3750 mg L−1. Direct contact trials show confluent cell layers on AD, PE and OW fibres after 14 days, while no cells are observed on the Ox surfaces. A >50% cell viability is observed in AD, PE and OW eluates after 3 days, when compared with Ox eluates (<10% cell viability). Toxicity in Ox is attributed to the notable pH change, from neutral pH 7.49 to acidic pH 2.44, that takes place on dissolution of the surface oxide layer in the growth media. We conclude, as-prepared Ge–Sb–Se glasses are cytocompatible and toxicity arises when an oxide layer is forced to develop on the glass surface. We present a study that aims to evaluate the cytotoxicity of Ge20Sb10Se70 at% glass optical fibres on 3T3 mouse fibroblast cells. To observe the toxicity of these optical fibres, 3T3 fibroblast proliferation was investigated.![]()
Collapse
|
22
|
Ahmed S, Gao X, Jahan MA, Adams M, Wu N, Kovinich N. Nanoparticle-based genetic transformation of Cannabis sativa. J Biotechnol 2020; 326:48-51. [PMID: 33373624 DOI: 10.1016/j.jbiotec.2020.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
Cannabis sativa (Cannabis) is a multipurpose plant species consisting of specific lineages that for centuries has either been artificially selected for the production of fiber or the psychoactive drug Δ9-tetrahydrocannabinol (THC). With the recent lifting of previous legal restrictions on consuming Cannabis, there has been a resurgence of interest in understanding and manipulating Cannabis genetics to enhance its compositions. Yet, recently developed approaches are not amenable to high-throughput gene stacking to study multi-genic traits. Here, we demonstrate an efficient nanoparticle-based transient gene transformation protocol where multiple gene plasmids can be expressed simultaneously in intact Cannabis leaf cells in a very short time (5 days). Constructs encoding two soybean transcription factors were co-grafted onto poly-ethylenimine cationic polymer-modified silicon dioxide-coated gold nanoparticles (PEI-Au@SiO2). Infiltration of the DNA-PEI-Au@SiO2 into Cannabis leaf tissues resulted in the transcription of both soybean genes and the localization of fluorescent-tagged transcription factor proteins in the nuclei of Cannabis leaf cells including the trichomes, which are the cell types that biosynthesize valuable cannabinoid and terpene metabolites. Our study exemplifies a rapid transient gene transformation approach that will be useful to study the effects of gene stacking in Cannabis.
Collapse
Affiliation(s)
- Sajjad Ahmed
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Xuefei Gao
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Md Asraful Jahan
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Maxwell Adams
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Nianqiang Wu
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, 26506, USA; Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA
| | - Nik Kovinich
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada; Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
23
|
Rodzik A, Pomastowski P, Railean-Plugaru V, Sprynskyy M, Buszewski B. The Study of Zinc Ions Binding to α S1-, β- and κ-Casein. Int J Mol Sci 2020; 21:E8096. [PMID: 33142990 PMCID: PMC7662941 DOI: 10.3390/ijms21218096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 01/28/2023] Open
Abstract
The presented studies focused on the specificity binding of particular casein fractions: αS1-, β- and κ-casein (αS1CN, βCN, κCN), with zinc ions. The binding mechanism was determined by kinetic modeling using results of batch sorption. For this goal, models of zero-order kinetics, pseudo-first-order, pseudo-second-order and Weber-Morris intraparticle diffusion were used. The formation of Zn-αS1CN, Zn-βCN and Zn-κCN complexes was additionally monitored using spectroscopic methods such as Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy, characterizing active functional groups involved in the binding process. Additionally, a mass spectrometry technique-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-was used to characterize respective protein fractions and obtained complexes. Spectroscopic and spectrometric studies were carried out both before and after binding the protein with zinc ions. The obtained results showed the difference in Zn-αS1CN, Zn-βCN and Zn-κCN complexes created at separate kinetic stages. On the basis of instrumental studies, a significant influence of acidic (glutamic acid (Glu), aspartic acid (Asp)) and aromatic (tryptophan (Trp), phenylalanine (Phe), tyrosine (Tyr)) amino acids on the formation of metal complexes was proven. In turn, spectrometric studies allowed determining the molecular masses of casein isoforms before and after binding to zinc ions.
Collapse
Affiliation(s)
- Agnieszka Rodzik
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (V.R.-P.); (M.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (V.R.-P.); (M.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (V.R.-P.); (M.S.); (B.B.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (V.R.-P.); (M.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
24
|
Suri R, Neupane YR, Kohli K, Jain GK. Polyoliposomes: novel polyol-modified lipidic nanovesicles for dermal and transdermal delivery of drugs. NANOTECHNOLOGY 2020; 31:355103. [PMID: 32380490 DOI: 10.1088/1361-6528/ab912d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Various lipid nanovesicular systems have been developed with the aim to enhance the delivery of drugs via transdermal route. However, their clinical applications are often limited due to the barrier nature of skin and lack of flexibility. Herein, we have modified the conventional nanoliposomes (CLs) prepared by a thin-film hydration method by the addition of a polyol (glycerol) to form novel lipid nanovesicular structures termed 'POLYOLIPOSOMES' (PLs). They were further named as PL-B (before film formation) and PL-A (after film formation), depending on the stage of glycerol addition during production. Optimized CLs, PL-B and PL-A showed spherical nanovesicles and hydrodynamic diameter of 181.3 ± 4.11 nm, 114.2 ± 7.21 nm and 170.2 ± 6.51 nm, respectively. PLs showed significantly higher % entrapment efficiency and deformability index in comparison to CLs, indicating their higher flexibility. Furthermore, DSC and attenuated total relection (ATR)-Fourier transform infrared (FTIR) studies revealed the intercalation of glycerol into the lipid bilayer of PLs and interaction between nanovesicles and skin. Moreover, ex vivo and in vivo skin permeation studies confirmed the enhanced drug delivery of PLs via the transdermal route. Taken together, these results illustrate the potential of PLs as a novel lipid nanovesicular system for drug delivery via the transdermal route for both systematic (PL-B) as well as cutaneous diseases (PL-A).
Collapse
Affiliation(s)
- Reshal Suri
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | | | | | | |
Collapse
|
25
|
Bediako JK, Choi JW, Song MH, Zhao Y, Lin S, Sarkar AK, Cho CW, Yun YS. Recovery of gold via adsorption-incineration techniques using banana peel and its derivatives: Selectivity and mechanisms. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 113:225-235. [PMID: 32535374 DOI: 10.1016/j.wasman.2020.05.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
In this study, banana peel (BP) and its derivatives after sequential extraction of biochemical components were evaluated for selective recovery of gold. In-depth instrumental characterizations including XPS, FTIR, XRD and HR-TEM were performed to understand the adsorption mechanisms. The biomass after lipid extraction, BP-L, demonstrated very good affinity and selectivity towards gold. In multi-metal systems containing 100 mg/L of Pt(IV), Au(III), Pd(II), Zn(II), Co(II), Ni(II) and Li(I), the selectivity coefficient increased from 978.45 in BP to 2034.70 in BP-L. Moreover, the equilibrium gold uptake was improved and reached 475.48 ± 3.08 mg/g owing to reduction-coupled adsorption mechanisms. The BP-L also showed improved gold nanoparticle formation properties that were pH-dependent. In a strategic adsorption-combined incineration process, metallic gold reaching 99.96% in purity was obtained. The BP and its derivative, BP-L have thus shown potentials for multiple applications in the areas of precious metal recovery and nanoscience.
Collapse
Affiliation(s)
- John Kwame Bediako
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; School of Engineering Sciences, University of Ghana, Legon, Ghana
| | - Jong-Won Choi
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Myung-Hee Song
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Yufeng Zhao
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Shuo Lin
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Amit Kumar Sarkar
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Chul-Woong Cho
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yeoung-Sang Yun
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.
| |
Collapse
|
26
|
Buszewski B, Rodzik A, Railean-Plugaru V, Sprynskyy M, Pomastowski P. A study of zinc ions immobilization by β-lactoglobulin. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Bediako JK, Sarkar AK, Lin S, Zhao Y, Song MH, Choi JW, Cho CW, Yun YS. Characterization of the residual biochemical components of sequentially extracted banana peel biomasses and their environmental remediation applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 89:141-153. [PMID: 31079727 DOI: 10.1016/j.wasman.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
After consumption of the inner fleshy fruit, the banana peel like many other fruit peels is usually disposed of unprocessed. For sustainable development, agro-wastes including banana peels need to be converted into valuable products that will be beneficial to human and the environment. In this study, biochemical components including lipids, proteins and structural polysaccharides were sequentially extracted from banana peel, and the residuals were characterized by FE-SEM/EDX, FTIR, XRD, TGA/DSC, XPS and elemental analysis. Owing to rapid industrialization, toxic species such as metals and dyes are consistently released into the aquatic environments. Therefore, the residual biomass samples were evaluated for environmental remediation application. The adsorption performances were outstanding, with uptakes reaching 1034, 279 and 152 mg/g, for methylene blue, lead and platinum, respectively. This study thus suggests that sequential extraction and detailed characterization are useful for identification of key contributing components for development of high-performance agro-waste-based adsorbents for water treatment.
Collapse
Affiliation(s)
- John Kwame Bediako
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Amit Kumar Sarkar
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Shuo Lin
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Yufeng Zhao
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Myung-Hee Song
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Jong-Won Choi
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Chul-Woong Cho
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Yeoung-Sang Yun
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.
| |
Collapse
|
28
|
Paunesku T, Woloschak G. Reflections on Basic Science Studies Involving Low Doses of Ionizing Radiation. HEALTH PHYSICS 2018; 115:623-627. [PMID: 30260853 PMCID: PMC6226262 DOI: 10.1097/hp.0000000000000937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Investigation of health effects of low doses of radiation as a field of study has been riddled with difficulties since its inception. In this document we will use 100 mGy as the cutoff upper limit for low-dose radiation, borrowing this definition from the U.S. Department of Energy, although other agencies and researchers sometimes include up to five-fold higher doses under the same title. Difficulties in this area of research are most often ascribed to the fact that effects of low doses of radiation are subtle and difficult to distinguish from the plethora of other low-grade stresses. Thus, for example, most epidemiological studies include hundreds of thousands of samples and generate risk estimates that are statistically meaningful only when they are considered on a scale of hundreds or thousands of people. A logical approach to remedy the situation for low-dose research was to conduct well-controlled animal studies with hundreds of animals; nevertheless, even after many such studies were completed, our understanding of the biological basis for risk from low-dose radiation exposure is still not conclusive. In this paper we argue that the problem lies in the fact that our approach to animal studies is not comprehensive but conceptually binary. While some researchers apply epidemiological models to animal data, others look into molecular and cellular biology only. Very few studies are conducted to bridge this gap and consider how a realistic model of DNA damage could be integrated into a realistic model of radiation carcinogenesis.
Collapse
Affiliation(s)
| | - Gayle Woloschak
- Tarry Building Room 4-760, 300 E Superior, Chicago, IL 60611
| |
Collapse
|
29
|
Soft and Robust Identification of Body Fluid Using Fourier Transform Infrared Spectroscopy and Chemometric Strategies for Forensic Analysis. Sci Rep 2018; 8:8459. [PMID: 29855535 PMCID: PMC5981217 DOI: 10.1038/s41598-018-26873-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
Body fluid (BF) identification is a critical part of a criminal investigation because of its ability to suggest how the crime was committed and to provide reliable origins of DNA. In contrast to current methods using serological and biochemical techniques, vibrational spectroscopic approaches provide alternative advantages for forensic BF identification, such as non-destructivity and versatility for various BF types and analytical interests. However, unexplored issues remain for its practical application to forensics; for example, a specific BF needs to be discriminated from all other suspicious materials as well as other BFs, and the method should be applicable even to aged BF samples. Herein, we describe an innovative modeling method for discriminating the ATR FT-IR spectra of various BFs, including peripheral blood, saliva, semen, urine and sweat, to meet the practical demands described above. Spectra from unexpected non-BF samples were efficiently excluded as outliers by adopting the Q-statistics technique. The robustness of the models against aged BFs was significantly improved by using the discrimination scheme of a dichotomous classification tree with hierarchical clustering. The present study advances the use of vibrational spectroscopy and a chemometric strategy for forensic BF identification.
Collapse
|
30
|
Gustafsson Å, Krais AM, Gorzsás A, Lundh T, Gerde P. Isolation and characterization of a respirable particle fraction from residential house-dust. ENVIRONMENTAL RESEARCH 2018; 161:284-290. [PMID: 29172162 DOI: 10.1016/j.envres.2017.10.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 05/12/2023]
Abstract
Indoor air pollution has caused increasing concern in recent years. As we spend most of our lives indoors, it is crucial to understand the health effects caused by indoor air pollution. Household dust serve as good proxy for accessing indoor air pollution, especially smaller dust particles that can pass into the lungs are of interest. In this study we present an efficient method for the isolation of dust particles in the respirable size range. The respirable fraction was recovered from vacuum cleaner bags, separated by stepwise sieving, followed by characterization for size, morphology, surface area, organic content and elemental composition. The respirable fraction was obtained in a yield of 0.6% with a specific surface area of 2.5m2/g and a Mass Median Aerodynamic Diameter of 3.73 ± 0.15µm. Aluminum and zink were the dominating metals measured in the dust, whereas the major mineral components were found to be silicon dioxide and calcium carbonate. The fraction of organic matter in the dust was measured to be 69 ± 1%. The organic matrix contained bacterial and fungi and a presence of skin fragments. We present here an efficient and fast method for the isolation of dust particles in the respirable size range. That is of considerable value due to the need for large quantities of respirable particle fractions to conduct toxicological studies and risk assessment work.
Collapse
Affiliation(s)
- Åsa Gustafsson
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden; Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden.
| | - Annette M Krais
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden; Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| | - András Gorzsás
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Per Gerde
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden; Institute of Environmental Medicine (IMM), Karolinska Institutet, Box 287, SE-17177 Stockholm, Sweden
| |
Collapse
|
31
|
Kamel G, Lefrançois S, Al-Najdawi M, Abu-Hanieh T, Saleh I, Momani Y, Dumas P. EMIRA: The Infrared Synchrotron Radiation Beamline at SESAME. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/08940886.2017.1338415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Gihan Kamel
- SESAME, Allan, Jordan
- Helwan University, Cairo, Egypt
| | | | | | | | | | | | - Paul Dumas
- Synchrotron SOLEIL, Gif-sur-Yvette, France
| |
Collapse
|
32
|
Licursi V, Cestelli Guidi M, Del Vecchio G, Mannironi C, Presutti C, Amendola R, Negri R. Leptin induction following irradiation is a conserved feature in mammalian epithelial cells and tissues. Int J Radiat Biol 2017; 93:947-957. [DOI: 10.1080/09553002.2017.1339918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Valerio Licursi
- CNR, Institute for Systems Analysis and Computer Science “Antonio Ruberti”, Rome, Italy
| | | | - Giorgia Del Vecchio
- Dipartimento di Biologia e Biotecnologie C. Darwin, Sapienza Università di Roma, Rome, Italy
| | | | - Carlo Presutti
- Dipartimento di Biologia e Biotecnologie C. Darwin, Sapienza Università di Roma, Rome, Italy
| | - Roberto Amendola
- Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati, Frascati, Italy
- ENEA National Agency for New Technologies, Energy and Sustainable Economic Development, SSPT, TECS, Rome, Italy
| | - Rodolfo Negri
- Dipartimento di Biologia e Biotecnologie C. Darwin, Sapienza Università di Roma, Rome, Italy
- CNR, Istituto di Biologia e Patologia Molecolari, Rome, Italy
| |
Collapse
|
33
|
Nakasone K, Ikematsu S, Kobayashi T. Biocompatibility Evaluation of Cellulose Hydrogel Film Regenerated from Sugar Cane Bagasse Waste and Its in Vivo Behavior in Mice. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b03926] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kazuki Nakasone
- Department
of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Shinya Ikematsu
- Department
of Bioresources Engineering, Okinawa National College of Technology, Henoko 905, Nago, Okinawa 905-2192, Japan
| | - Takaomi Kobayashi
- Department
of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| |
Collapse
|
34
|
Aerts AM, Impens NREN, Baatout S, Benotmane MA, Camps J, Dabin JM, Derradji H, Grosche B, Horemans N, Jourdain JR, Moreels M, Perko T, Quintens R, Repussard J, Rühm W, Schneider T, Struelens L, Hardeman F. Joint research towards a better radiation protection-highlights of the Fifth MELODI Workshop. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2014; 34:931-56. [PMID: 25431966 DOI: 10.1088/0952-4746/34/4/931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
MELODI is the European platform dedicated to low-dose radiation risk research. From 7 October through 10 October 2013 the Fifth MELODI Workshop took place in Brussels, Belgium. The workshop offered the opportunity to 221 unique participants originating from 22 countries worldwide to update their knowledge and discuss radiation research issues through 118 oral and 44 poster presentations. In addition, the MELODI 2013 workshop was reaching out to the broader radiation protection community, rather than only the low-dose community, with contributions from the fields of radioecology, emergency and recovery preparedness, and dosimetry. In this review, we summarise the major scientific conclusions of the workshop, which are important to keep the MELODI strategic research agenda up-to-date and which will serve to establish a joint radiation protection research roadmap for the future.
Collapse
Affiliation(s)
- A M Aerts
- Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
A proposed integrated systems approach to the radiation biology of cosmic interest: biophysics and molecular characterization of tissues irradiated with 14 MeV neutrons. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2013. [DOI: 10.1007/s12210-013-0272-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Huang H, Liu J, Feng Y, Chen W. The distribution of apolipoprotein E gene polymorphism in Chinese civil aircrews, and a possible risk factor to their overweight and dyslipidemia is cumulative flight time. Clin Chim Acta 2013; 416:36-40. [DOI: 10.1016/j.cca.2012.10.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/11/2012] [Accepted: 10/30/2012] [Indexed: 12/28/2022]
|