1
|
Gerritsen JS, White FM. Phosphoproteomics: a valuable tool for uncovering molecular signaling in cancer cells. Expert Rev Proteomics 2021; 18:661-674. [PMID: 34468274 PMCID: PMC8628306 DOI: 10.1080/14789450.2021.1976152] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Many pathologies, including cancer, have been associated with aberrant phosphorylation-mediated signaling networks that drive altered cell proliferation, migration, metabolic regulation, and can lead to systemic inflammation. Phosphoproteomics, the large-scale analysis of protein phosphorylation sites, has emerged as a powerful tool to define signaling network regulation and dysregulation in normal and pathological conditions. AREAS COVERED We provide an overview of methodology for global phosphoproteomics as well as enrichment of specific subsets of the phosphoproteome, including phosphotyrosine and phospho-motif enrichment of kinase substrates. We review quantitative methods, advantages and limitations of different mass spectrometry acquisition formats, and computational approaches to extract biological insight from phosphoproteomics data. Throughout, we discuss various applications and their challenges in implementation. EXPERT OPINION Over the past 20 years the field of phosphoproteomics has advanced to enable deep biological and clinical insight through the quantitative analysis of signaling networks. Future areas of development include Clinical Laboratory Improvement Amendments (CLIA)-approved methods for analysis of clinical samples, continued improvements in sensitivity to enable analysis of small numbers of rare cells and tissue microarrays, and computational methods to integrate data resulting from multiple systems-level quantitative analytical methods.
Collapse
Affiliation(s)
- Jacqueline S Gerritsen
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, U.S.A
| | - Forest M White
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, U.S.A
| |
Collapse
|
2
|
Abstract
Miniaturization is an important trend in modern analytical instrument development, including miniaturized gas chromatography and liquid chromatography, as well as micro bore columns and capillary-to-microfluidics-based platforms. Apart from the miniaturization of the separation column, which is the core part of a chromatographic system, other parts of the system, including the sampler, pumping system, gradient generation, and detection systems, have been miniaturized. Miniaturized liquid chromatography significantly reduces solvent and sample consumption while providing comparable or even better separation efficiency. When liquid chromatography is coupled with mass spectroscopy, a low flow rate can increase the ionization efficiency, leading to enhanced sensitivity of the mass spectrometer. In contrast, normal-scale liquid chromatography suffers from its relatively high volumetric flow rate, which challenges the scanning frequency of the mass spectrometer. On the other hand because of the small sample size, other detection strategies such as spectrometric methods cannot provide sufficient sensitivity and limits of detection. In this sense, mass spectrometry has become the detection method of choice for micro-scale liquid-phase chromatography. Miniaturized liquid chromatography can diminish sample dilution efficiently when extremely small amounts of samples are used. The main driving force for this miniaturization trend, especially in liquid-phase separations, is the desperate need for microscale analyses of biological and clinical samples, given these samples are precious and the sample size is usually very small. At present, microscale liquid-phase chromatography is the only method of choice for such small, precious, and highly informative samples. The miniaturization of liquid chromatography systems, especially chromatographic columns, would be advantageous to the modularization and integration of liquid chromatography instrumental systems. Chip liquid chromatography is an integration of chromatography columns, liquid control systems, and detection methods on a single microfluidic chip. Chip liquid chromatography is an excellent format for the miniaturization of liquid chromatography systems, and it has already attracted significant attention from academia and industry. However, this attempt is challenging, and great effort is required on fundamental techniques, such as the substrate material of the microfluidic chip, structure of the micro-chromatography column, fluid control method, and detection methods, in order to make the chips suitable for liquid chromatography. Currently, the major problem in chip liquid chromatography is that the properties of the chip substrate materials cannot meet the requirements for further miniaturization and integration of chip liquid chromatography. The strength of the existing chip substrate materials is generally below 60 MPa, and the material properties limit further advances in the miniaturization and integration of chromatographic chips. Therefore, new chip substrate materials and the standard of chip channel design such as channel size and channel structure should be the key for further development of chip liquid chromatography. Mainstream instrumentation companies as well as new start-up innovation companies are now undertaking efforts toward the development of microchip liquid chromatographic products. Agilent, the first instrumentation company that introduced commercial microchip liquid chromatographic columns to the market, has led this field. Apart from microchip-based columns, Agilent introduced trap columns for different kinds of biological molecules as well as gradient generation systems for microchip-based liquid phase chromatography. Recently, another start-up company introduced microchip columns based on the in situ microfabrication of the column bed rather than packing the column with a particulate material. Such developments in microfabrication may further propel the advancement of micro-scale liquid-phase chromatography to an unprecedented level, which is beyond the conventional components and materials employed in normal-scale liquid chromatography. This review introduces the recent research progress in microchip liquid chromatography technologies, and briefly discusses the current state of commercialization of microchips for liquid chromatography by major instrumentation companies.
Collapse
Affiliation(s)
- Hanrong WEN
- 厦门大学化学化工学院, 福建 厦门 361005
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jue ZHU
- 厦门大学化学化工学院, 福建 厦门 361005
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bo ZHANG
- 厦门大学化学化工学院, 福建 厦门 361005
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Deng J, Ikenishi F, Smith N, Lazar IM. Streamlined microfluidic analysis of phosphopeptides using stable isotope-labeled synthetic peptides and MRM-MS detection. Electrophoresis 2018; 39:3171-3184. [PMID: 30216485 DOI: 10.1002/elps.201800133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 11/07/2022]
Abstract
Modern high-throughput and high-content biological research is performed with advanced instrumentation and complex and time-consuming protocols, which, as a whole, pose a challenge for routine implementation in a research laboratory. In support of a "bioanalytical toolbox" with potential utility for exploring cellular functions mediated via protein phosphorylation-a post-translational modification (PTM) with essential regulatory roles in a variety of cellular processes-in this work, we describe the development of a simple, integrated microfluidic chip that can perform targeted, quantitative analysis of phosphopeptides involved in cancer-relevant signaling pathways. The microfluidic device comprises microreactors packed with C18 and TiO2 particles for on-chip solid phase extraction (SPE) and phosphopeptide enrichment, and an ESI interface for facilitating multiple reaction monitoring (MRM)-mass spectrometry (MS) detection. The chips are demonstrated for the detection of three phosphopeptides involved in ERBB2/MAPK signaling pathways, selected from the outcome of a proteomic study involving EGF stimulation of SKBR3/HER2+ breast cancer cells. The data demonstrate that the proposed microfluidic strategy can be used for the MS quantification of phosphopeptides in the low nM range from cell lysates without any prior sample pretreatment, fractionation or bioaffinity enrichment, and is generally applicable to the analysis of any phosphopeptide targets.
Collapse
Affiliation(s)
- Jingren Deng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Fumio Ikenishi
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Nicole Smith
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
4
|
Kecskemeti A, Gaspar A. Particle-based liquid chromatographic separations in microfluidic devices - A review. Anal Chim Acta 2018; 1021:1-19. [DOI: 10.1016/j.aca.2018.01.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 01/06/2023]
|
5
|
Haghighi F, Talebpour Z, Nezhad AS. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Hoque A, Hossain MI, Ameen SS, Ang CS, Williamson N, Ng DCH, Chueh AC, Roulston C, Cheng HC. A beacon of hope in stroke therapy-Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies. Pharmacol Ther 2016; 160:159-79. [PMID: 26899498 DOI: 10.1016/j.pharmthera.2016.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excitotoxicity, a pathological process caused by over-stimulation of ionotropic glutamate receptors, is a major cause of neuronal loss in acute and chronic neurological conditions such as ischaemic stroke, Alzheimer's and Huntington's diseases. Effective neuroprotective drugs to reduce excitotoxic neuronal loss in patients suffering from these neurological conditions are urgently needed. One avenue to achieve this goal is to clearly define the intracellular events mediating the neurotoxic signals originating from the over-stimulated glutamate receptors in neurons. In this review, we first focus on the key cellular events directing neuronal death but not involved in normal physiological processes in the neurotoxic signalling pathways. These events, referred to as pathologically activated events, are potential targets for the development of neuroprotectant therapeutics. Inhibitors blocking some of the known pathologically activated cellular events have been proven to be effective in reducing stroke-induced brain damage in animal models. Notable examples are inhibitors suppressing the ion channel activity of neurotoxic glutamate receptors and those disrupting interactions of specific cellular proteins occurring only in neurons undergoing excitotoxic cell death. Among them, Tat-NR2B9c and memantine are clinically effective in reducing brain damage caused by some acute and chronic neurological conditions. Our second focus is evaluation of the suitability of the other inhibitors for use as neuroprotective therapeutics. We also discuss the experimental approaches suitable for bridging our knowledge gap in our current understanding of the excitotoxic signalling mechanism in neurons and discovery of new pathologically activated cellular events as potential targets for neuroprotection.
Collapse
Affiliation(s)
- Ashfaqul Hoque
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - M Iqbal Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - S Sadia Ameen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ching-Seng Ang
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Dominic C H Ng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Anderly C Chueh
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Carli Roulston
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
7
|
Abstract
Protein phosphorylation is a ubiquitous posttranslational modification, which is heavily involved in signal transduction. Misregulation of protein phosphorylation is often associated with a decrease in cell viability and complex diseases such as cancer. The dynamic and low abundant nature of phosphorylated proteins makes studying phosphoproteome a challenging task. In this review, we summarize state of the art proteomic techniques to study and quantify peptide phosphorylation in biological systems and discuss their limitations. Due to its short-lived nature, the phosphorylation event cannot be precisely traced in a heterogonous cell population, which highlights the importance of analyzing phosphorylation events at the single cell level. Mainly, we focus on the methodical and instrumental developments in proteomics and nanotechnology, which will help to build more accurate and robust systems for the feasibility of phosphorylation analysis at the single cell level. We propose that an automated and miniaturized construction of analytical systems holds the key to the future of phosphoproteomics; therefore, we highlight the benchmark studies in this direction. Having advanced and automated microfluidic chip LC systems will allow us to analyze single-cell phosphoproteomics and quantitatively compare it with others. The progress in the microfluidic chip LC systems and feasibility of the single-cell phosphoproteomics will be beneficial for early diagnosis and detection of the treatment response of many crucial diseases.
Collapse
Affiliation(s)
- Ayse Nur Polat
- Department of Molecular Biology and Genetics, Science Faculty, Koç University, Istanbul, Turkey.
| | | |
Collapse
|
8
|
Lab-on-a-Chip hyphenation with mass spectrometry: strategies for bioanalytical applications. Curr Opin Biotechnol 2014; 31:79-85. [PMID: 25232996 DOI: 10.1016/j.copbio.2014.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 11/23/2022]
Abstract
The Lab-on-a-Chip concept aims at miniaturizing laboratory processes to enable automation and/or parallelization via microfluidic chips that are capable of handling minute sample volumes. Mass spectrometry is nowadays the detection method of choice, because of its selectivity, sensitivity and wide application range. We review the most interesting examples over the last two-and-a-half years where the two techniques were used for bioanalytical applications. Furthermore, we discuss the merits and limitations of such hyphenated systems. We inventorize the reported applications and approaches. We see an ongoing trend towards chip-based liquid chromatography-mass spectrometry usage and small volume analysis applications, particularly in the field of proteomics where bottom-up approaches profit from chip-based technologies and hyphenation with complex cell cultures.
Collapse
|
9
|
Thürmann S, Belder D. Phase-optimized chip-based liquid chromatography. Anal Bioanal Chem 2014; 406:6599-606. [DOI: 10.1007/s00216-014-8087-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 11/30/2022]
|
10
|
Comparison of a novel TiO2/diatomite composite and pure TiO2 for the purification of phosvitin phosphopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 960:52-8. [DOI: 10.1016/j.jchromb.2014.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 11/22/2022]
|
11
|
Battle KN, Uba FI, Soper SA. Microfluidics for the analysis of membrane proteins: How do we get there? Electrophoresis 2014; 35:2253-66. [DOI: 10.1002/elps.201300625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/16/2014] [Accepted: 02/17/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Katrina N. Battle
- Department of Chemistry; Louisiana State University; Baton Rouge LA USA
| | - Franklin I. Uba
- Department of Chemistry; University of North Carolina; Chapel Hill NC USA
| | - Steven A. Soper
- Department of Chemistry; Louisiana State University; Baton Rouge LA USA
- Department of Chemistry; University of North Carolina; Chapel Hill NC USA
- Department of Biomedical Engineering; University of North Carolina; Chapel Hill NC USA
- BioFluidica, LLC, c/o Carolina Kick-Start; Chapel Hill NC USA
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology; Ulsan Korea
| |
Collapse
|
12
|
Lin SL, Lin TY, Fuh MR. Microfluidic chip-based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications: An update. Electrophoresis 2013; 35:1275-84. [DOI: 10.1002/elps.201300415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Shu-Ling Lin
- Department of Chemistry; Soochow University; Taipei Taiwan
| | | | - Ming-Ren Fuh
- Department of Chemistry; Soochow University; Taipei Taiwan
| |
Collapse
|
13
|
Novel nanomaterials used for sample preparation for protein analysis. Anal Bioanal Chem 2013; 406:35-47. [DOI: 10.1007/s00216-013-7392-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022]
|
14
|
Recent developments in microfluidic chip-based separation devices coupled to MS for bioanalysis. Bioanalysis 2013; 5:2567-80. [DOI: 10.4155/bio.13.196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In recent years, the development of microfluidic chip separation devices coupled to MS has dramatically increased for high-throughput bioanalysis. In this review, advances in different types of microfluidic chip separation devices, such as electrophoresis- and LC-based microchips, as well as 2D design of microfluidic chip-based separation devices will be discussed. In addition, the utilization of chip-based separation devices coupled to MS for analyzing peptides/proteins, glycans, drug metabolites and biomarkers for various bioanalytical applications will be evaluated.
Collapse
|
15
|
Quantitative microfluidic biomolecular analysis for systems biology and medicine. Anal Bioanal Chem 2013; 405:5743-58. [PMID: 23568613 DOI: 10.1007/s00216-013-6930-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/10/2013] [Accepted: 03/19/2013] [Indexed: 12/12/2022]
Abstract
In the postgenome era, biology and medicine are rapidly evolving towards quantitative and systems studies of complex biological systems. Emerging breakthroughs in microfluidic technologies and innovative applications are transforming systems biology by offering new capabilities to address the challenges in many areas, such as single-cell genomics, gene regulation networks, and pathology. In this review, we focus on recent progress in microfluidic technology from the perspective of its applications to promoting quantitative and systems biomolecular analysis in biology and medicine.
Collapse
|