1
|
Guilbault S, Garrigue P, Garnier L, Pandard J, Lemaître F, Guille-Collignon M, Sojic N, Arbault S. Design of optoelectrodes for the remote imaging of cells and in situ electrochemical detection of neurosecretory events. Bioelectrochemistry 2022; 148:108262. [PMID: 36130462 DOI: 10.1016/j.bioelechem.2022.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
Optical fibers have opened avenues for remote imaging, bioanalyses and recently optogenetics. Besides, miniaturized electrochemical sensors have offered new opportunities in sensing directly redox neurotransmitters. The combination of both optical and electrochemical approaches was usually performed on the platform of microscopes or within microsystems. In this work, we developed optoelectrodes which features merge the advantages of both optical fibers and microelectrodes. Optical fiber bundles were modified at one of their extremity by a transparent ITO deposit. The electrochemical responses of these ITO-modified bundles were characterized for the detection of dopamine, epinephrine and norepinephrine. The analytical performances of the optoelectrodes were equivalent to the ones reported for carbon microelectrodes. The remote imaging of model neurosecretory PC12 cells by optoelectrodes was performed upon cell-staining with common fluorescent dyes: acridine orange and calcein-AM. An optoelectrode placed by micromanipulation at a few micrometers-distance from the cells offered remote images with single cell resolution. Finally, in situ electrochemical sensing was demonstrated by additions of K+-secretagogue solutions near PC12 cells under observation, leading to exocytotic events detected as amperometric spikes at the ITO surface. Such dual sensors should pave the way for in vivo remote imaging, optogenetic stimulation, and simultaneous detection of neurosecretory activities.
Collapse
Affiliation(s)
- Samuel Guilbault
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Léo Garnier
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Justine Pandard
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| |
Collapse
|
2
|
Derivative UV/Vis spectroelectrochemistry in a thin-layer regime: deconvolution and simultaneous quantification of ascorbic acid, dopamine and uric acid. Anal Bioanal Chem 2020; 412:6329-6339. [DOI: 10.1007/s00216-020-02564-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 02/28/2020] [Indexed: 01/06/2023]
|
3
|
Patel BR, Noroozifar M, Kerman K. Prussian blue-doped nanosized polyaniline for electrochemical detection of benzenediol isomers. Anal Bioanal Chem 2020; 412:1769-1784. [PMID: 32043201 DOI: 10.1007/s00216-020-02400-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Simultaneous speciation of benzenediol isomers (BDIs), 1,2-benzenediol (catechol, CC), 1,3-benzenediol (resorcinol, RS), and 1,4-benzenediol (hydroquinone, HQ), was investigated by differential pulse voltammetry (DPV) using a graphite paste electrode (GPE) modified with Prussian blue-polyaniline nanocomposite. The modified GPE showed good stability, sensitivity, and selectivity properties for all the three BDIs. Prussian blue-doped nanosized polyaniline (PBNS-PANI) was synthesized first by using mechanochemical reactions between aniline and ferric chloride hexahydrate as the oxidants and then followed by the addition of potassium hexacyanoferrate(II) in a solid-state and template-free technique. The material was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The DPV measurements are performed in phosphate electrolyte solution with pH 4.0 at a potential range of - 0.1 to 1.0 V. The proposed modified electrode displayed a strong, stable, and continuous three well-separated oxidation peaks towards electrooxidation at potentials 0.20, 0.31, and 0.76 V for HQ, CC, and RS, respectively. The calibration curves were linear from 1 to 350.5 μM for both HQ and CC, while for RS, it was from 2 to 350.5 μM. The limit of detection was determined to be 0.18, 0.01, and 0.02 μM for HQ, CC, and RS, respectively. The analytical performance of the PBNS-PANI/GPE has been evaluated for simultaneous determination of HQ, CC, and RS in creek water, commercial hair dye, and skin whitening cream samples with satisfactory recoveries between 90 and 106%. Overall, we demonstrated that the presence of NS-PANI and PB resulted in a large redox-active surface area that enabled a promising analytical platform for simultaneous detection of BDIs. Graphical abstract.
Collapse
Affiliation(s)
- Bhargav R Patel
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
4
|
Dossi N, Toniolo R, Terzi F, Grazioli C, Svigelj R, Gobbi F, Bontempelli G. A Simple Strategy for Easily Assembling 3D Printed Miniaturized Cells Suitable for Simultaneous Electrochemical and Spectrophotometric Analyses. ELECTROANAL 2020. [DOI: 10.1002/elan.201900461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nicolò Dossi
- Department of Agrifood, Environmental and Animal ScienceUniversity of Udine via Cotonificio 108 I-33100 Udine Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal ScienceUniversity of Udine via Cotonificio 108 I-33100 Udine Italy
| | - Fabio Terzi
- Department of Chemical and Geological ScienceUniversity of Modena and Reggio Emilia via Campi 183 I-41125 Modena Italy
| | - Cristian Grazioli
- Department of Agrifood, Environmental and Animal ScienceUniversity of Udine via Cotonificio 108 I-33100 Udine Italy
| | - Rossella Svigelj
- Department of Agrifood, Environmental and Animal ScienceUniversity of Udine via Cotonificio 108 I-33100 Udine Italy
| | - Filippo Gobbi
- Department of Agrifood, Environmental and Animal ScienceUniversity of Udine via Cotonificio 108 I-33100 Udine Italy
| | - Gino Bontempelli
- Department of Agrifood, Environmental and Animal ScienceUniversity of Udine via Cotonificio 108 I-33100 Udine Italy
| |
Collapse
|
5
|
Garoz‐Ruiz J, Perales‐Rondon JV, Heras A, Colina A. Spectroelectrochemical Sensing: Current Trends and Challenges. ELECTROANAL 2019. [DOI: 10.1002/elan.201900075] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jesus Garoz‐Ruiz
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | | | - Aranzazu Heras
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Alvaro Colina
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| |
Collapse
|
6
|
Garoz-Ruiz J, Guillen-Posteguillo C, Colina A, Heras A. Application of spectroelectroanalysis for the quantitative determination of mixtures of compounds with highly overlapping signals. Talanta 2019; 195:815-821. [DOI: 10.1016/j.talanta.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 11/30/2022]
|
7
|
Heras A, Vulcano F, Garoz-Ruiz J, Porcelli N, Terzi F, Colina A, Seeber R, Zanardi C. A Flexible Platform of Electrochemically Functionalized Carbon Nanotubes for NADH Sensors. SENSORS 2019; 19:s19030518. [PMID: 30691171 PMCID: PMC6386930 DOI: 10.3390/s19030518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/14/2023]
Abstract
A flexible electrode system entirely constituted by single-walled carbon nanotubes (SWCNTs) has been proposed as the sensor platform for β-nicotinamide adenine dinucleotide (NADH) detection. The performance of the device, in terms of potential at which the electrochemical process takes place, significantly improves by electrochemical functionalization of the carbon-based material with a molecule possessing an o-hydroquinone residue, namely caffeic acid. Both the processes of SWCNT functionalization and NADH detection have been studied by combining electrochemical and spectroelectrochemical experiments, in order to achieve direct evidence of the electrode modification by the organic residues and to study the electrocatalytic activity of the resulting material in respect to functional groups present at the electrode/solution interface. Electrochemical measurements performed at the fixed potential of +0.30 V let us envision the possible use of the device as an amperometric sensor for NADH detection. Spectroelectrochemistry also demonstrates the effectiveness of the device in acting as a voltabsorptometric sensor for the detection of this same analyte by exploiting this different transduction mechanism, potentially less prone to the possible presence of interfering species.
Collapse
Affiliation(s)
- Aranzazu Heras
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain.
| | - Fabio Vulcano
- Department of Chemical and Geological Sciences, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), via P. Gobetti 101, 40129 Bologna, Italy.
| | - Jesus Garoz-Ruiz
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain.
| | - Nicola Porcelli
- Department of Chemical and Geological Sciences, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| | - Fabio Terzi
- Department of Chemical and Geological Sciences, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| | - Alvaro Colina
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain.
| | - Renato Seeber
- Department of Chemical and Geological Sciences, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), via P. Gobetti 101, 40129 Bologna, Italy.
| | - Chiara Zanardi
- Department of Chemical and Geological Sciences, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), via P. Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
8
|
Ibañez D, Gomez E, Valles E, Colina A, Heras A. Spectroelectrochemical monitoring of contaminants during the electrochemical filtration process using free-standing carbon nanotube filters. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
|
10
|
Garoz-Ruiz J, Guillen-Posteguillo C, Heras A, Colina A. Simplifying the assessment of parameters of electron-transfer reactions by using easy-to-use thin-layer spectroelectrochemistry devices. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
11
|
Ibañez D, Galindo M, Colina A, Valles E, Heras A, Gomez E. Silver nanoparticles/free-standing carbon nanotube Janus membranes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Garoz-Ruiz J, Heras A, Colina A. Direct Determination of Ascorbic Acid in a Grapefruit: Paving the Way for In Vivo Spectroelectrochemistry. Anal Chem 2017; 89:1815-1822. [DOI: 10.1021/acs.analchem.6b04155] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jesus Garoz-Ruiz
- Department of Chemistry, Universidad de Burgos, Plaza Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Aranzazu Heras
- Department of Chemistry, Universidad de Burgos, Plaza Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Alvaro Colina
- Department of Chemistry, Universidad de Burgos, Plaza Misael Bañuelos s/n, E-09001 Burgos, Spain
| |
Collapse
|
13
|
Ibañez D, Garoz-Ruiz J, Heras A, Colina A. Simultaneous UV–Visible Absorption and Raman Spectroelectrochemistry. Anal Chem 2016; 88:8210-7. [DOI: 10.1021/acs.analchem.6b02008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- David Ibañez
- Department of Chemistry, Universidad de Burgos, Pza. Misael
Bañuelos s/n, E-09001 Burgos, Spain
| | - Jesus Garoz-Ruiz
- Department of Chemistry, Universidad de Burgos, Pza. Misael
Bañuelos s/n, E-09001 Burgos, Spain
| | - Aranzazu Heras
- Department of Chemistry, Universidad de Burgos, Pza. Misael
Bañuelos s/n, E-09001 Burgos, Spain
| | - Alvaro Colina
- Department of Chemistry, Universidad de Burgos, Pza. Misael
Bañuelos s/n, E-09001 Burgos, Spain
| |
Collapse
|
14
|
Garoz-Ruiz J, Ibañez D, Romero EC, Ruiz V, Heras A, Colina A. Optically transparent electrodes for spectroelectrochemistry fabricated with graphene nanoplatelets and single-walled carbon nanotubes. RSC Adv 2016. [DOI: 10.1039/c6ra04116g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hybrid optically transparent electrodes based on single-walled carbon nanotubes and graphene nanoplatelets have been fabricated. The new methodology can be used with other carbon nanomaterials.
Collapse
Affiliation(s)
| | - David Ibañez
- Department of Chemistry
- Universidad de Burgos
- E-09001 Burgos
- Spain
| | - Edna C. Romero
- Department of Chemistry
- Universidad de Burgos
- E-09001 Burgos
- Spain
| | - Virginia Ruiz
- IK4-CIDETEC
- Materials Division
- E-20009 San Sebastián
- Spain
| | - Aranzazu Heras
- Department of Chemistry
- Universidad de Burgos
- E-09001 Burgos
- Spain
| | - Alvaro Colina
- Department of Chemistry
- Universidad de Burgos
- E-09001 Burgos
- Spain
| |
Collapse
|
15
|
Garoz-Ruiz J, Heras A, Palmero S, Colina A. Development of a Novel Bidimensional Spectroelectrochemistry Cell Using Transfer Single-Walled Carbon Nanotubes Films as Optically Transparent Electrodes. Anal Chem 2015; 87:6233-9. [DOI: 10.1021/acs.analchem.5b00923] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jesus Garoz-Ruiz
- Department of Chemistry, Universidad de Burgos, Pza. Misael
Bañuelos s/n, E-09001 Burgos, Spain
| | - Aranzazu Heras
- Department of Chemistry, Universidad de Burgos, Pza. Misael
Bañuelos s/n, E-09001 Burgos, Spain
| | - Susana Palmero
- Department of Chemistry, Universidad de Burgos, Pza. Misael
Bañuelos s/n, E-09001 Burgos, Spain
| | - Alvaro Colina
- Department of Chemistry, Universidad de Burgos, Pza. Misael
Bañuelos s/n, E-09001 Burgos, Spain
| |
Collapse
|
16
|
Abstract
This contribution provides a personal overview and summary of Faraday Discussion 172 on “Carbon in Electrochemistry”, covering some of the key points made at the meeting within the broader context of other recent developments on carbon materials for electrochemical applications. Although carbon electrodes have a long history of use in electrochemistry, methods and techniques are only just becoming available that can test long-established models and identify key features for further exploration. This Discussion has highlighted the need for a better understanding of the impact of surface structure, defects, local density of electronic states, and surface functionality and contamination, in order to advance fundamental knowledge of various electrochemical processes and phenomena at carbon electrodes. These developments cut across important materials such as graphene, carbon nanotubes, conducting diamond and high surface area carbon materials. With more detailed pictures of structural and electronic controls of electrochemistry at carbon electrodes (and electrodes generally), will come rational advances in various technological applications, from sensors to energy technology (particularly batteries, supercapacitors and fuel cells), that have been well-illustrated at this Discussion.
Collapse
Affiliation(s)
- Patrick R. Unwin
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL, UK
| |
Collapse
|