1
|
Zhou X, Zhang H, Wang L, Wu R. An alkali-resistant zirconium-biligand organic framework with dual-metal centers for highly selective capture of phosphopeptides. Analyst 2022; 148:85-94. [PMID: 36444932 DOI: 10.1039/d2an01604d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The stability of MOFs plays one of the most important roles in material applications, while the delicate structure of MOFs suffers from the limitation of poor alkali tolerance. A new biligand Zr-MOF (biUIO-66-NH2NO2) with alkali-resistance performance and active functional groups has been synthesized in this study. The biUIO-66-NH2NO2 demonstrated a much better stability in 1% NH3·H2O solution than its parent material, UIO-66-NH2. Following further immobilization of Zr4+ ions, the biDZMOF consisting of dual-zirconium centers was prepared and was further applied in global enrichment of phosphopeptides by avoiding the instability of enrichment materials in the essential alkali elution procedure for the phosphopeptide enrichment workflow. The alkali-resistant elution of phosphopeptides from the biDZMOF can be directly coupled to a tandem mass spectrometry system for peptide analysis without desalting treatment. 425 phosphopeptides in total in 3 independent samples were identified from 10 μL human saliva after enrichment with biDZMOF. The improvement in alkali resistance and successful post-modification of biUIO-66-NH2NO2 suggest an efficient strategy to develop new types of MOF materials for application.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Zhang
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Li Wang
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ren'an Wu
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
2
|
Liu J, Liu Y, Liang Y, Ma F, Bai Q. Poly- l-lysine-functionalized magnetic graphene for the immobilized metal affinity purification of histidine-rich proteins. NEW J CHEM 2021. [DOI: 10.1039/d1nj00059d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal affinity-poly-l-lysine functionalization on a magnetic graphene substrate for simultaneously improving the adsorption selectivity toward histidine-rich proteins and inhibiting the non-specific adsorption.
Collapse
Affiliation(s)
- Jiawei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Yingying Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Yixun Liang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Fen Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Quan Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi’an
- P. R. China
| |
Collapse
|
3
|
Li Y, Sun N, Hu X, Li Y, Deng C. Recent advances in nanoporous materials as sample preparation techniques for peptidome research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115658] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Guo PF, Wang XM, Chen XW, Yang T, Chen ML, Wang JH. Nanostructures serve as adsorbents for the selective separation/enrichment of proteins. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Li L, Geng Y, Xiang Y, Qiang H, Wang Y, Chang J, Zhao H, Zhang L. Instrument-free enrichment and detection of phosphopeptides using paper-based Phos-PAD. Anal Chim Acta 2019; 1062:102-109. [DOI: 10.1016/j.aca.2019.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 01/24/2023]
|
6
|
Huan W, Zhang J, Qin H, Huan F, Wang B, Wu M, Li J. A magnetic nanofiber-based zwitterionic hydrophilic material for the selective capture and identification of glycopeptides. NANOSCALE 2019; 11:10952-10960. [PMID: 31139800 DOI: 10.1039/c9nr01441a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-performance affinity materials are highly required in the sample preparation process in mass spectrometry-based glycoproteomics studies. In this research, a novel magnetic nanofiber-based zwitterionic hydrophilic material is prepared for glycopeptide enrichment and identification. The one-dimensional hydroxyapatite nanofiber (HN) acted as the supporting substance for immobilizing both Fe3O4 nanoparticles and Au nanoparticles, following the surface modification with a zwitterionic tripeptide l-glutathione (GSH) via the affinity interactions between the thiol group in GSH and both Au and Fe3O4 to form the magHN/Au-GSH nanofiber. Owing to the unique structural features, excellent hydrophilicity, abundant zwitterionic molecules, and strong magnetic responsiveness, the as-prepared magHN/Au-GSH nanofiber possesses satisfactory specificity for glycopeptide enrichment. As a result, the magHN/Au-GSH nanofiber demonstrated great detection sensitivity (2 fmol), satisfying enrichment recovery (89.65%), large binding capacity (100 mg g-1), and high enrichment selectivity (1 : 100) toward glycopeptides. Furthermore, 246 N-glycosylated peptides corresponding to 104 N-glycosylated proteins were identified from only 1 μL human serum, revealing the great potential of this affinity nanofiber for glycopeptide enrichment and glycoproteomics research.
Collapse
Affiliation(s)
- Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an District, Hangzhou 311300, China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Hassanain WA, Sivanesan A, Izake E, Ayoko GA. An electrochemical biosensor for the rapid detection of erythropoietin in blood. Talanta 2018; 189:636-640. [DOI: 10.1016/j.talanta.2018.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 01/14/2023]
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
9
|
Al-Hetlani E, Amin MO, Madkour M, Nazeer AA. CeO 2-CB nanocomposite as a novel SALDI substrate for enhancing the detection sensitivity of pharmaceutical drug molecules in beverage samples. Talanta 2018; 185:439-445. [PMID: 29759225 DOI: 10.1016/j.talanta.2018.03.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/06/2023]
Abstract
SALDI-MS analysis of pharmaceutical drug molecules (amitriptyline, imipramine and promazine) using carbon-based substrates, namely, activated charcoal (AC), carbon nanotubes (CNTs), carbon black (CB), graphene (rGO), graphene oxide (GO) and graphite, was explored and compared with the conventional organic matrix of MALDI. CB exhibited superior performance with respect to the other substrates in terms of detection sensitivity. Despite the effectiveness of CB to detect all drug molecules, it demonstrated a number of background signals, which may be an issue for the analysis of other molecules in the future. Therefore, for the first time, a CeO2-CB nanocomposite was synthesized and applied as a novel SALDI substrate to minimize the background signals and stabilize CB when exposed to high laser power. The nanocomposite was characterized using XRD, TEM, FTIR, UV-Vis and N2 sorpometry. The spectrum obtained using the novel nanocomposite in the absence of the drug molecules showed minimal background signals compared to CB. Additionally, the CeO2-CB nanocomposite enhanced the detection sensitivity of the drug molecules with a limit of detection (LOD) of 100 ng/mL. This active substrate nanocomposite was further applied for the analysis of drug-spiked beverages without sample pretreatment or extraction, mimicking cases encountered by forensic toxicologists. All of the drugs and/or their adducts were detected in the drug-spiked beverage samples.
Collapse
Affiliation(s)
- Entesar Al-Hetlani
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
| | - Mohamed O Amin
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Metwally Madkour
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Ahmed Abdel Nazeer
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
10
|
Yao J, Sun N, Deng C. Recent advances in mesoporous materials for sample preparation in proteomics research. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Polymeric ionic liquid-assembled graphene-immobilized silica composite for selective isolation of human serum albumin from human whole blood. Anal Bioanal Chem 2017; 410:573-584. [PMID: 29184996 DOI: 10.1007/s00216-017-0758-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022]
Abstract
Polymeric ionic liquids (PILs) with 1-vinyl-3-ethylimidazolium cations and two different anions of Br- and PF6- were assembled onto the surface of graphene (G) nanosheets. The derived two composites, i.e., PIL(Br)-G and PIL(PF6)-G, were further efficiently immobilized onto the surface of silica nanoparticles via self-assembly technique. The obtained two PIL-G/SiO2 nanocomposites exhibited diverse adsorption performances toward proteins through adjusting the anions of PILs. Electrostatic attractions between proteins and the nanocomposites dominated protein adsorption, while the presence of PF6- anions weakened electrostatic interactions and deteriorated the selective adsorption of target protein, i.e., bovine serum albumin (BSA) in this case. Specifically, PIL(Br)-G/SiO2 nanocomposite displayed high selectivity toward BSA and a high adsorption efficiency of ca. 98% was achieved for 100 mg L-1 BSA in a Britton-Robinson (B-R) buffer at pH 5. HPLC analysis demonstrated the selectivity of PIL(Br)-G/SiO2 nanocomposite toward BSA in the presence of abundant hemoglobin and cytochrome c. The practical applicability was verified by performing selective isolation of human serum albumin (HSA) from human whole blood. Graphical abstract Selective isolation of human serum albumin from blood by polymeric ionic liquid assembled graphene immobilized silica nanocomposite with tunable anions.
Collapse
|
12
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
13
|
Dai J, Wang M, Liu H. Highly selective enrichment of phosphopeptides using Zr4+-immobilized Titania nanoparticles. Talanta 2017; 164:222-227. [DOI: 10.1016/j.talanta.2016.11.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/24/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
|
14
|
Stine KJ. Application of Porous Materials to Carbohydrate Chemistry and Glycoscience. Adv Carbohydr Chem Biochem 2017; 74:61-136. [PMID: 29173727 DOI: 10.1016/bs.accb.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is a growing interest in using a range of porous materials to meet research needs in carbohydrate chemistry and glycoscience in general. Among the applications of porous materials reviewed in this chapter, enrichment of glycans from biological samples prior to separation and analysis by mass spectrometry is a major emphasis. Porous materials offer high surface area, adjustable pore sizes, and tunable surface chemistry for interacting with glycans, by boronate affinity, hydrophilic interactions, molecular imprinting, and polar interactions. Among the materials covered in this review are mesoporous silica and related materials, porous graphitic carbon, mesoporous carbon, porous polymers, and nanoporous gold. In some applications, glycans are enzymatically or chemically released from glycoproteins or glycopeptides, and the porous materials have the advantage of size selectivity admitting only the glycans into the pores and excluding proteins. Immobilization of lectins onto porous materials of suitable pore size allows for the use of lectin-carbohydrate interactions in capture or separation of glycoproteins. Porous material surfaces modified with carbohydrates can be used for the selective capture of lectins. Controlled release of therapeutics from porous materials mediated by glycans has been reported, and so has therapeutic targeting using carbohydrate-modified porous particles. Additional applications of porous materials in glycoscience include their use in the supported synthesis of oligosaccharides and in the development of biosensors for glycans.
Collapse
|
15
|
Wang J, Liu Q, Liang Y, Jiang G. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal Bioanal Chem 2016; 408:2861-73. [DOI: 10.1007/s00216-015-9255-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
|
16
|
Xu B, Cheng S, Wang X, Wang D, Xu L. Novel polystyrene/antibody nanoparticle-coated capillary for immunoaffinity in-tube solid-phase microextraction. Anal Bioanal Chem 2015; 407:2771-5. [DOI: 10.1007/s00216-014-8419-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
|
17
|
Li LP, Liu JZ, Xu LN, Li Z, Bai Y, Xiao YL, Liu HW. GdF3as a promising phosphopeptide affinity probe and dephospho-labelling medium: experiments and theoretical explanation. Chem Commun (Camb) 2014; 50:11572-5. [DOI: 10.1039/c4cc04090b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Xu LN, Li LP, Jin L, Bai Y, Liu HW. Guanidyl-functionalized graphene as a bifunctional adsorbent for selective enrichment of phosphopeptides. Chem Commun (Camb) 2014; 50:10963-6. [DOI: 10.1039/c4cc04327h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This novel bi-functional gfg provides two enriching performances, one is for global phosphopeptides, and the other is for multi-phosphopeptides with consecutive phosphorylated residues.
Collapse
Affiliation(s)
- Lin-Nan Xu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| | - Li-Ping Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| | - Liang Jin
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| | - Hu-Wei Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| |
Collapse
|