1
|
Hardinge P. Optimized Loop-Mediated Isothermal Amplification (LAMP) Allows Single Copy Detection Using Bioluminescent Assay in Real Time (BART). Methods Mol Biol 2022; 2524:107-117. [PMID: 35821466 DOI: 10.1007/978-1-0716-2453-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The bioluminescent assay in real time (BART) is a molecular diagnostic tool for the detection of nucleic acid amplification by recording light output. The key component for BART is a thermostable luciferase derived from the firefly Photinus pyralis. Coupling BART detection with the isothermal amplification method loop-mediated isothermal amplification (LAMP) enables rapid molecular diagnostic results using simple equipment. LAMP-BART provides quantitative results from a closed tube and is appropriate to microliter standard tests and nanoliter microfluidic assays. In this chapter, we introduce a protocol to amplify and detect genetic markers using LAMP with BART. Furthermore, we provide advice to optimize LAMP assays for high sensitivity and specificity and to eliminate the incidence of "false positive" results which can occur from the components of the assay. The optimization of genetically modified (GM) maize by targeting the nopaline synthase terminator (NOSt) and 35S promoter (35Sp) sequences is described.
Collapse
|
2
|
DAMÚS MELGAREJO ME, PÉREZ ESTIGARRIBIA PE, MASARU IEHISA J, ARRUA JMM, CAZAL MARTÍNEZ CC, ARRUA AA. Contamination of corn grain for human consumption with transgenic sequences in Paraguay. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.35718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Optimised LAMP allows single copy detection of 35Sp and NOSt in transgenic maize using Bioluminescent Assay in Real Time (BART). Sci Rep 2018; 8:17590. [PMID: 30514874 PMCID: PMC6279926 DOI: 10.1038/s41598-018-36207-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/09/2018] [Indexed: 11/23/2022] Open
Abstract
Loop-mediated amplification (LAMP) has been widely used to amplify and hence detect nucleic acid target sequences from various pathogens, viruses and genetic modifications. Two distinct types of primer are required for LAMP; hairpin-forming LAMP and displacement. High specificity arises from this use of multiple primers, but without optimal conditions for LAMP, sensitivity can be poor. We confirm here the importance of LAMP primer design, concentrations and ratios for efficient LAMP amplification. We further show that displacement primers are non-essential to the LAMP reaction at certain concentrations providing accelerating loop primers are present. We investigate various methods to quantify DNA extracts from GM maize certified reference materials to calculate the target copy numbers of template presented to the LAMP reaction, and show that LAMP can amplify transgenic promoter/terminator sequences in DNA extracted from various maize GM events using primers designed to target the 35S promoter (35Sp) or NOS terminator (NOSt) sequences, detection with both bioluminescence in real-time (BART) and fluorescent methods. With prior denaturation and HPLC grade LAMP primers single copy detection was achieved, showing that optimised LAMP conditions can be combined with BART for single copy targets, with simple and cost efficient light detection electronics over fluorescent alternatives.
Collapse
|
4
|
Leguizamón Guerrero JE, Vela Rojas AF, Arias Cortés MM, Cifuentes Fernández LF. Panorama general de los organismos genéticamente modificados en Colombia y en el mundo: Capacidad nacional de detección. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2018. [DOI: 10.15446/rev.colomb.biote.v20n2.77080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los organismos genéticamente modificados (OGM) y en particular los cultivos genéticamente modificados (GM), son el resultado de la modificación de la información genética de una especie a partir del uso de la biotecnología moderna para proporcionar nuevas características que su contraparte no modificada no posee, tales como resistencia a insectos, tolerancia a herbicidas, contenido de nutrientes entre otros. La mayor parte de estos cultivos se concentran en cuatro productos: soya (Glycine max), maíz (Zea Mays), canola (Brassica napus) y algodón (Gossypium hirsutum); y los principales productores son Estados Unidos, Brasil, Argentina, India y Canadá. Por su parte, Colombia ocupa el puesto 18 con cultivos de maíz, algodón y claveles azules. La introducción de estas especies en cualquier mercado está limitada por la legislación propia del país destino, así como por los estudios que permiten establecer su efecto sobre el medio ambiente, la salud humana y animal; en este sentido, la precisión y confianza de las técnicas analíticas empleadas en la evaluación del contenido de OGM son un elemento importante para la toma de decisiones basadas en evidencias objetivas, especialmente frente al debate en torno a su uso. Este documento presenta una revisión de las tecnologías de análisis más importantes disponibles a nivel mundial, frente a las capacidades nacionales para su detección.
Collapse
|
5
|
Salisu IB, Shahid AA, Yaqoob A, Ali Q, Bajwa KS, Rao AQ, Husnain T. Molecular Approaches for High Throughput Detection and Quantification of Genetically Modified Crops: A Review. FRONTIERS IN PLANT SCIENCE 2017; 8:1670. [PMID: 29085378 PMCID: PMC5650622 DOI: 10.3389/fpls.2017.01670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/11/2017] [Indexed: 06/01/2023]
Abstract
As long as the genetically modified crops are gaining attention globally, their proper approval and commercialization need accurate and reliable diagnostic methods for the transgenic content. These diagnostic techniques are mainly divided into two major groups, i.e., identification of transgenic (1) DNA and (2) proteins from GMOs and their products. Conventional methods such as PCR (polymerase chain reaction) and enzyme-linked immunosorbent assay (ELISA) were routinely employed for DNA and protein based quantification respectively. Although, these Techniques (PCR and ELISA) are considered as significantly convenient and productive, but there is need for more advance technologies that allow for high throughput detection and the quantification of GM event as the production of more complex GMO is increasing day by day. Therefore, recent approaches like microarray, capillary gel electrophoresis, digital PCR and next generation sequencing are more promising due to their accuracy and precise detection of transgenic contents. The present article is a brief comparative study of all such detection techniques on the basis of their advent, feasibility, accuracy, and cost effectiveness. However, these emerging technologies have a lot to do with detection of a specific event, contamination of different events and determination of fusion as well as stacked gene protein are the critical issues to be addressed in future.
Collapse
Affiliation(s)
- Ibrahim B. Salisu
- Department of Animal Science, Faculty of Agriculture, Federal University Dutse, Jigawa, Nigeria
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad A. Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Amina Yaqoob
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Kamran S. Bajwa
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abdul Q. Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Kundapur RR, Nema V. Loop-mediated isothermal amplification: Beyond microbial identification. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23312025.2015.1137110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rajesh R. Kundapur
- Division of Molecular Biology, National AIDS Research Institute, 73 ‘G’ MIDC, Bhosari, Pune 411026, India
| | - Vijay Nema
- Division of Molecular Biology, National AIDS Research Institute, 73 ‘G’ MIDC, Bhosari, Pune 411026, India
| |
Collapse
|
7
|
Fraiture MA, Herman P, Taverniers I, De Loose M, Deforce D, Roosens NH. Current and new approaches in GMO detection: challenges and solutions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:392872. [PMID: 26550567 PMCID: PMC4624882 DOI: 10.1155/2015/392872] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/07/2015] [Indexed: 11/17/2022]
Abstract
In many countries, genetically modified organisms (GMO) legislations have been established in order to guarantee the traceability of food/feed products on the market and to protect the consumer freedom of choice. Therefore, several GMO detection strategies, mainly based on DNA, have been developed to implement these legislations. Due to its numerous advantages, the quantitative PCR (qPCR) is the method of choice for the enforcement laboratories in GMO routine analysis. However, given the increasing number and diversity of GMO developed and put on the market around the world, some technical hurdles could be encountered with the qPCR technology, mainly owing to its inherent properties. To address these challenges, alternative GMO detection methods have been developed, allowing faster detections of single GM target (e.g., loop-mediated isothermal amplification), simultaneous detections of multiple GM targets (e.g., PCR capillary gel electrophoresis, microarray, and Luminex), more accurate quantification of GM targets (e.g., digital PCR), or characterization of partially known (e.g., DNA walking and Next Generation Sequencing (NGS)) or unknown (e.g., NGS) GMO. The benefits and drawbacks of these methods are discussed in this review.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Technology and Food Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Burg. Van Gansberghelaan 115, Bus 1, 9820 Merelbeke, Belgium
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Philippe Herman
- Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Isabel Taverniers
- Technology and Food Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Burg. Van Gansberghelaan 115, Bus 1, 9820 Merelbeke, Belgium
| | - Marc De Loose
- Technology and Food Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Burg. Van Gansberghelaan 115, Bus 1, 9820 Merelbeke, Belgium
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Nancy H. Roosens
- Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| |
Collapse
|
8
|
Zahradnik C, Kolm C, Martzy R, Mach RL, Krska R, Farnleitner AH, Brunner K. Response to letter to the editor regarding "detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach". Anal Bioanal Chem 2014; 406:8061-2. [PMID: 25354886 DOI: 10.1007/s00216-014-8183-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Celine Zahradnik
- Institute of Chemical Engineering, Center for Analytical Chemistry, IFA-Tulln, Vienna University of Technology, 3430, Tulln, Austria
| | | | | | | | | | | | | |
Collapse
|