1
|
Nagai R, Milam O, Niwa T, Howell W, Best J, Yoshida H, Freeburg C, Koomen J, Fujii K. Ribosomal expansion segment contributes to translation fidelity via N-terminal processing of ribosomal proteins. Nucleic Acids Res 2025; 53:gkaf448. [PMID: 40433980 PMCID: PMC12117404 DOI: 10.1093/nar/gkaf448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/30/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Eukaryotic ribosomes exhibit higher mRNA translation fidelity than prokaryotic ribosomes, partly due to eukaryote-specific ribosomal RNA (rRNA) insertions. Among these, expansion segment 27L (ES27L) on the 60S subunit enhances fidelity by anchoring methionine aminopeptidase (MetAP) at the nascent protein exit tunnel, accelerating co-translational N-terminal initiator methionine (iMet) processing. However, the mechanisms by which iMet processing influences translation fidelity remain unknown. Using yeast in vitro translation (IVT) systems, we found that inhibiting co-translational iMet processing does not impact ribosome decoding of ongoing peptide synthesis. Instead, our novel method to monitor iMet processing in vivo revealed that ribosomes purified from strains lacking MetAP ribosomal association (ES27L Δb1-4) or major yeast MetAP (Δmap1) increase iMet retention on ribosomal proteins (RPs). Given the densely packed structure of ribosomes, iMet retention on RPs may distort ribosomal structure and impair its function. Indeed, reconstituted IVT systems containing iMet-retaining ribosome subunits from ES27L Δb1-4 strain, combined with translation factors from wild-type strains, elucidated that iMet retention on the 40S ribosomal subunit causes translation errors. Our study demonstrated the critical role of ES27L in adjusting ribosome association of universally conserved MetAP enzyme to fine-tune iMet processing of key RPs, thereby ensuring the structural integrity and functional accuracy of eukaryotic ribosomes.
Collapse
Affiliation(s)
- Riku Nagai
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States
| | - Olivia L Milam
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Kanagawa 226-8503, Japan
| | - William J Howell
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States
| | - Jacob A Best
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States
| | - Hideji Yoshida
- Department of Physics, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Carver D Freeburg
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States
| | - John M Koomen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, United States
| | - Kotaro Fujii
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
2
|
Pang M, Jones JJ, Wang TY, Quan B, Kubat NJ, Qiu Y, Roukes ML, Chou TF. Increasing Proteome Coverage Through a Reduction in Analyte Complexity in Single-Cell Equivalent Samples. J Proteome Res 2025; 24:1528-1538. [PMID: 38832920 PMCID: PMC11976869 DOI: 10.1021/acs.jproteome.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
The advancement of sophisticated instrumentation in mass spectrometry has catalyzed an in-depth exploration of complex proteomes. This exploration necessitates a nuanced balance in experimental design, particularly between quantitative precision and the enumeration of analytes detected. In bottom-up proteomics, a key challenge is that oversampling of abundant proteins can adversely affect the identification of a diverse array of unique proteins. This issue is especially pronounced in samples with limited analytes, such as small tissue biopsies or single-cell samples. Methods such as depletion and fractionation are suboptimal to reduce oversampling in single cell samples, and other improvements on LC and mass spectrometry technologies and methods have been developed to address the trade-off between precision and enumeration. We demonstrate that by using a monosubstrate protease for proteomic analysis of single-cell equivalent digest samples, an improvement in quantitative accuracy can be achieved, while maintaining high proteome coverage established by trypsin. This improvement is particularly vital for the field of single-cell proteomics, where single-cell samples with limited number of protein copies, especially in the context of low-abundance proteins, can benefit from considering analyte complexity. Considerations about analyte complexity, alongside chromatographic complexity, integration with data acquisition methods, and other factors such as those involving enzyme kinetics, will be crucial in the design of future single-cell workflows.
Collapse
Affiliation(s)
- Marion Pang
- Division
of Biology and Biological Engineering, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Jeff J. Jones
- Division
of Biology and Biological Engineering, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Proteome
Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Ting-Yu Wang
- Division
of Biology and Biological Engineering, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Proteome
Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Baiyi Quan
- Division
of Physics, Mathematics and Astronomy, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Nicole J. Kubat
- Division
of Physics, Mathematics and Astronomy, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Yanping Qiu
- Division
of Biology and Biological Engineering, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Proteome
Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Michael L. Roukes
- Division
of Biology and Biological Engineering, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Division
of Physics, Mathematics and Astronomy, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Division
of Engineering and Applied Science, California
Institute of Technology, 1200 East California Blvd, Pasadena, California 91125, United States
| | - Tsui-Fen Chou
- Division
of Biology and Biological Engineering, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Proteome
Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Cai H, Yuan R, Huang S, Huang Y, Lin C, Lin Y, Luo F, Lin Z, Wang L. Sensitive trypsin sensor based on the regulation of microscale ionic current rectification by the selectivity hydrolysis of hydrogel filled in microchannel. Talanta 2025; 285:127422. [PMID: 39709827 DOI: 10.1016/j.talanta.2024.127422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Filling the microchannel with negatively charged hydrogel can exhibit microsacle ion current rectification (ICR) behavior, which is attributed to the space negative charge and structural asymmetry of hydrogel. In this study, this character had been applied to develop a trypsin sensor for the first time. A hydrogel synthesized with bovine serum albumin (BSA) and glyoxal (BSAG hydrogel) was filled at the tip of microchannel firstly. Subsequently, the BSAG hydrogel-filled microchannel was immersed in a trypsin solution to hydrolyze the BSA within the BSAG hydrogel. This process changes the space charge density and pore size of the BSAG hydrogel-filled microchannel, leading to a change in microscale ICR, which can be used for quantifying trypsin. Then the key parameters affecting the sensing performance such as the concentration of BSA, strength of the electrolyte, pH and reaction time were optimized. The detection range was from 10.0 ng/mL to 100 μg/mL with a detection limit as low as 2.55 ng/mL (S/N = 3). Due to the distinctive three-dimensional pore structure of the hydrogel and the specificity of trypsin for BSA hydrolysis, the sensor exhibits high sensitivity and specificity, as well as remarkable reproducibility and stability. This sensor has been effectively used to measure trypsin levels in human serum samples.
Collapse
Affiliation(s)
- Huabin Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Runhao Yuan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shaokun Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yanling Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Yue Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Xiamen Hospital, Fudan University, Xiamen, 361015, China.
| |
Collapse
|
4
|
Saei AA, Lundin A, Lyu H, Gharibi H, Luo H, Teppo J, Zhang X, Gaetani M, Végvári Á, Holmdahl R, Gygi SP, Zubarev RA. Multifaceted Proteome Analysis at Solubility, Redox, and Expression Dimensions for Target Identification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401502. [PMID: 39120068 PMCID: PMC11481203 DOI: 10.1002/advs.202401502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Multifaceted interrogation of the proteome deepens the system-wide understanding of biological systems; however, mapping the redox changes in the proteome has so far been significantly more challenging than expression and solubility/stability analyses. Here, the first high-throughput redox proteomics approach integrated with expression analysis (REX) is devised and combined with the Proteome Integral Solubility Alteration (PISA) assay. The whole PISA-REX experiment with up to four biological replicates can be multiplexed into a single tandem mass tag TMTpro set. For benchmarking this compact tool, HCT116 cells treated with auranofin are analyzed, showing great improvement compared with previous studies. PISA-REX is then applied to study proteome remodeling upon stimulation of human monocytes by interferon α (IFN-α). Applying this tool to study the proteome changes in plasmacytoid dendritic cells (pDCs) isolated from wild-type versus Ncf1-mutant mice treated with interferon α, shows that NCF1 deficiency enhances the STAT1 pathway and modulates the expression, solubility, and redox state of interferon-induced proteins. Providing comprehensive multifaceted information on the proteome, the compact PISA-REX has the potential to become an industry standard in proteomics and to open new windows into the biology of health and disease.
Collapse
Affiliation(s)
- Amir A. Saei
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- BiozentrumUniversity of BaselBasel4056Switzerland
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholm17165Sweden
| | - Albin Lundin
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Hezheng Lyu
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Huqiao Luo
- Division of Immunology, Medical Inflammation Research Group, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSE‐17 177Sweden
| | - Jaakko Teppo
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Xuepei Zhang
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Massimiliano Gaetani
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- SciLifeLabStockholmSE‐17 177Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Rikard Holmdahl
- Division of Immunology, Medical Inflammation Research Group, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSE‐17 177Sweden
| | - Steven P. Gygi
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
| | - Roman A. Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- SciLifeLabStockholmSE‐17 177Sweden
| |
Collapse
|
5
|
Mansuri MS, Bathla S, Lam TT, Nairn AC, Williams KR. Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells. J Proteomics 2024; 297:105109. [PMID: 38325732 PMCID: PMC10939724 DOI: 10.1016/j.jprot.2024.105109] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors. There is therefore a need for a more standardized, general-purpose trypsin digestion protocol. Based on a review of the literature we delineate optimal conditions for carrying out trypsin digestions of complex proteomes from bulk samples to limiting amounts of protein extracts. Furthermore, we highlight recent developments and technological advances used in digestion protocols to quantify complex proteomes from single cells. SIGNIFICANCE: Currently, bottom-up MS-based proteomics is the method of choice for global proteome analysis. Since trypsin is the most utilized protease in bottom-up MS proteomics, delineating optimal conditions for carrying out trypsin digestions of complex proteomes in samples ranging from tissues to single cells should positively impact a broad range of biomedical research.
Collapse
Affiliation(s)
- M Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
6
|
Gharibi H, Ashkarran AA, Jafari M, Voke E, Landry MP, Saei AA, Mahmoudi M. A uniform data processing pipeline enables harmonized nanoparticle protein corona analysis across proteomics core facilities. Nat Commun 2024; 15:342. [PMID: 38184668 PMCID: PMC10771434 DOI: 10.1038/s41467-023-44678-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024] Open
Abstract
Protein corona, a layer of biomolecules primarily comprising proteins, forms dynamically on nanoparticles in biological fluids and is crucial for predicting nanomedicine safety and efficacy. The protein composition of the corona layer is typically analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Our recent study, involving identical samples analyzed by 17 proteomics facilities, highlighted significant data variability, with only 1.8% of proteins consistently identified across these centers. Here, we implement an aggregated database search unifying parameters such as variable modifications, enzyme specificity, number of allowed missed cleavages and a stringent 1% false discovery rate at the protein and peptide levels. Such uniform search dramatically harmonizes the proteomics data, increasing the reproducibility and the percentage of consistency-identified unique proteins across distinct cores. Specifically, out of the 717 quantified proteins, 253 (35.3%) are shared among the top 5 facilities (and 16.2% among top 11 facilities). Furthermore, we note that reduction and alkylation are important steps in protein corona sample processing and as expected, omitting these steps reduces the number of total quantified peptides by around 20%. These findings underscore the need for standardized procedures in protein corona analysis, which is vital for advancing clinical applications of nanoscale biotechnologies.
Collapse
Affiliation(s)
- Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Maryam Jafari
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth Voke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Amir Ata Saei
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Tsuboyama K, Dauparas J, Chen J, Laine E, Mohseni Behbahani Y, Weinstein JJ, Mangan NM, Ovchinnikov S, Rocklin GJ. Mega-scale experimental analysis of protein folding stability in biology and design. Nature 2023; 620:434-444. [PMID: 37468638 PMCID: PMC10412457 DOI: 10.1038/s41586-023-06328-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
Advances in DNA sequencing and machine learning are providing insights into protein sequences and structures on an enormous scale1. However, the energetics driving folding are invisible in these structures and remain largely unknown2. The hidden thermodynamics of folding can drive disease3,4, shape protein evolution5-7 and guide protein engineering8-10, and new approaches are needed to reveal these thermodynamics for every sequence and structure. Here we present cDNA display proteolysis, a method for measuring thermodynamic folding stability for up to 900,000 protein domains in a one-week experiment. From 1.8 million measurements in total, we curated a set of around 776,000 high-quality folding stabilities covering all single amino acid variants and selected double mutants of 331 natural and 148 de novo designed protein domains 40-72 amino acids in length. Using this extensive dataset, we quantified (1) environmental factors influencing amino acid fitness, (2) thermodynamic couplings (including unexpected interactions) between protein sites, and (3) the global divergence between evolutionary amino acid usage and protein folding stability. We also examined how our approach could identify stability determinants in designed proteins and evaluate design methods. The cDNA display proteolysis method is fast, accurate and uniquely scalable, and promises to reveal the quantitative rules for how amino acid sequences encode folding stability.
Collapse
Affiliation(s)
- Kotaro Tsuboyama
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- PRESTO, Japan Science and Technology Agency, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jonathan Chen
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Yasser Mohseni Behbahani
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Jonathan J Weinstein
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Niall M Mangan
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, USA
| | - Gabriel J Rocklin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
8
|
Nickerson JL, Doucette AA. Maximizing Cumulative Trypsin Activity with Calcium at Elevated Temperature for Enhanced Bottom-Up Proteome Analysis. BIOLOGY 2022; 11:biology11101444. [PMID: 36290348 PMCID: PMC9598648 DOI: 10.3390/biology11101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Simple Summary Trypsin is frequently employed to cleave proteins ahead of mass spectrometry characterization. Traditionally, enzyme digestion involves overnight incubation of proteins at 37 °C, which is time consuming though still may yield poor digestion efficiency. While raising the temperature should theoretically accelerate the digestion, it also destabilizes the enzyme and promotes trypsin de-activation. We therefore questioned whether elevated temperature is beneficial for improving tryptic digestion. Here, we quantify protein digestion kinetics at elevated temperatures for calcium-stabilized trypsin and enforce the critical importance of calcium ions to preserve the enzyme. We quantitatively demonstrate that 1 h at 47 °C provides a superior digest when compared to conventional (overnight, 37 °C) processing of the proteome. The practical impact of our enhanced digestion protocol is shown through bottom-up mass spectrometry analysis of a complex proteome mixture. Abstract Bottom-up proteomics relies on efficient trypsin digestion ahead of MS analysis. Prior studies have suggested digestion at elevated temperature to accelerate proteolysis, showing an increase in the number of MS-identified peptides. However, improved sequence coverage may be a consequence of partial digestion, as higher temperatures destabilize and degrade the enzyme, causing enhanced activity to be short-lived. Here, we use a spectroscopic (BAEE) assay to quantify calcium-stabilized trypsin activity over the complete time course of a digestion. At 47 °C, the addition of calcium contributes a 25-fold enhancement in trypsin stability. Higher temperatures show a net decrease in cumulative trypsin activity. Through bottom-up MS analysis of a yeast proteome extract, we demonstrate that a 1 h digestion at 47 °C with 10 mM Ca2+ provides a 29% increase in the total number of peptide identifications. Simultaneously, the quantitative proportion of peptides with 1 or more missed cleavage sites was diminished in the 47 °C digestion, supporting enhanced digestion efficiency with the 1 h protocol. Trypsin specificity also improves, as seen by a drop in the quantitative abundance of semi-tryptic peptides. Our enhanced digestion protocol improves throughput for bottom-up sample preparation and validates the approach as a robust, low-cost alternative to maximized protein digestion efficiency.
Collapse
|
9
|
Matsushita T, Maruyama N, Koyama T, Hatano K, Matsuoka K. Modification of Fab Fragments by Dibromopyridazinediones Carrying Mono- and Double-Biotin Functionalities. ACS OMEGA 2022; 7:34554-34562. [PMID: 36188280 PMCID: PMC9520716 DOI: 10.1021/acsomega.2c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
To verify the potencies of dibromopyridazinediones with mono- and double-biotin groups, the functions as cysteine-selective biotinylation reagents were evaluated through conjugation with a goat anti-mouse IgG Fab fragment as a functional protein model. The starting Fab was reduced with tris(2-carboxyethyl)phosphine to cleave the disulfide bond and then treated with the reagents. These reagents simultaneously introduced biotin groups into the reduced Fab and re-bridged the disulfide moiety. Furthermore, we demonstrated that the biotin-labeled Fabs were reactive to an antigen and streptavidin.
Collapse
Affiliation(s)
- Takahiko Matsushita
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Medical
Innovation Research Unit (MiU), Advanced Institute of Innovative Technology
(AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
- Health
Sciences and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Naoto Maruyama
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Tetsuo Koyama
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Ken Hatano
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Medical
Innovation Research Unit (MiU), Advanced Institute of Innovative Technology
(AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
- Health
Sciences and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Koji Matsuoka
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Medical
Innovation Research Unit (MiU), Advanced Institute of Innovative Technology
(AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
- Health
Sciences and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
10
|
Mori A, Masuda T, Ito S, Ohtsuki S. Human Hepatic Transporter Signature Peptides for Quantitative Targeted Absolute Proteomics: Selection, Digestion Efficiency, and Peptide Stability. Pharm Res 2022; 39:2965-2978. [PMID: 36131112 DOI: 10.1007/s11095-022-03387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Quantitative targeted absolute proteomics (QTAP) quantifies proteins by measuring the signature peptides produced from target proteins by trypsin digestion. The selection of signature peptides is critical for reliable peptide quantification. The purpose of this study was to comprehensively assess the digestion efficiency and stability of tryptic peptides and to identify optimal signature peptides for human hepatic transporters and membrane marker proteins. METHODS The plasma membrane fraction of the human liver was digested at different time points and the peptides were comprehensively quantified using quantitative proteomics. Transporters and membrane markers were quantified using the signature peptides by QTAP. RESULTS Tryptic peptides were classified into clusters with low digestion efficiency, low stability, and high digestion efficiency and stability. Using the cluster information, we found that a proline residue next to the digestion site or the peptide position in or close to the transmembrane domains lowers digestion efficiency. A peptide containing cysteine at the N-terminus or arginine-glycine lowers peptide stability. Based on this information and the time course of peptide quantification, optimal signature peptides were identified for human hepatic transporters and membrane markers. The quantification of transporters with multiple signature peptides yielded consistent absolute values with less than 30% of coefficient variants in human liver microsomes and homogenates. CONCLUSIONS The signature peptides selected in the present study enabled the reliable quantification of human hepatic transporters. The QTAP protocol using these optimal signature peptides provides quantitative data on hepatic transporters usable for integrated pharmacokinetic studies.
Collapse
Affiliation(s)
- Ayano Mori
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan. .,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
11
|
Dyakin VV, Uversky VN. Arrow of Time, Entropy, and Protein Folding: Holistic View on Biochirality. Int J Mol Sci 2022; 23:ijms23073687. [PMID: 35409047 PMCID: PMC8998916 DOI: 10.3390/ijms23073687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Chirality is a universal phenomenon, embracing the space–time domains of non-organic and organic nature. The biological time arrow, evident in the aging of proteins and organisms, should be linked to the prevalent biomolecular chirality. This hypothesis drives our exploration of protein aging, in relation to the biological aging of an organism. Recent advances in the chirality discrimination methods and theoretical considerations of the non-equilibrium thermodynamics clarify the fundamental issues, concerning the biphasic, alternative, and stepwise changes in the conformational entropy associated with protein folding. Living cells represent open, non-equilibrium, self-organizing, and dissipative systems. The non-equilibrium thermodynamics of cell biology are determined by utilizing the energy stored, transferred, and released, via adenosine triphosphate (ATP). At the protein level, the synthesis of a homochiral polypeptide chain of L-amino acids (L-AAs) represents the first state in the evolution of the dynamic non-equilibrium state of the system. At the next step the non-equilibrium state of a protein-centric system is supported and amended by a broad set of posttranslational modifications (PTMs). The enzymatic phosphorylation, being the most abundant and ATP-driven form of PTMs, illustrates the principal significance of the energy-coupling, in maintaining and reshaping the system. However, the physiological functions of phosphorylation are under the permanent risk of being compromised by spontaneous racemization. Therefore, the major distinct steps in protein-centric aging include the biosynthesis of a polypeptide chain, protein folding assisted by the system of PTMs, and age-dependent spontaneous protein racemization and degradation. To the best of our knowledge, we are the first to pay attention to the biphasic, alternative, and stepwise changes in the conformational entropy of protein folding. The broader view on protein folding, including the impact of spontaneous racemization, will help in the goal-oriented experimental design in the field of chiral proteomics.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), 140 Old Orangeburg Road, Bldg, 35, Orangeburg, NY 10962, USA
- Correspondence:
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA;
| |
Collapse
|
12
|
Chen Q, Jiang Y, Ren Y, Ying M, Lu B. Peptide Selection for Accurate Targeted Protein Quantification via a Dimethylation High-Resolution Mass Spectrum Strategy with a Peptide Release Kinetic Model. ACS OMEGA 2020; 5:3809-3819. [PMID: 32149207 PMCID: PMC7057324 DOI: 10.1021/acsomega.9b02002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
A crucial step in accurate targeted protein quantification using targeted proteomics is to determine optimal proteotypic peptides representing targeted proteins. In this study, a workflow of peptide selection to determine proteotypic peptides using a dimethylation high-resolution mass spectrum strategy with a peptide release kinetic model was investigated and applied in peptide selection of bovine serum albumin. After specificity, digestibility, recovery, and stability evaluation of tryptic peptides in bovine serum albumin, the optimal proteotypic peptide was selected as LVNELTEFAK. The quantification method using LVNELTEFAK gave a linear range of 1-100 ppm with the coefficient greater than 0.9990, and the detection limit of bovine serum albumin in milk was 0.78 mg/kg. Compared with the proteotypic peptides selected by Skyline, the method showed a better performance in method validation. The workflow exhibited high comprehensiveness and efficiency in peptide selection, facilitating accurate targeted protein quantification in the food matrix, which lack protein standards.
Collapse
Affiliation(s)
- Qi Chen
- National
Engineering Laboratory of Intelligent Food Technology and Equipment,
Key Laboratory for Agro-Products Postharvest Handling of Ministry
of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation
of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food
Processing, Fuli Institute of Food Science, College of Biosystems
Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo
Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yirong Jiang
- National
Engineering Laboratory of Intelligent Food Technology and Equipment,
Key Laboratory for Agro-Products Postharvest Handling of Ministry
of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation
of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food
Processing, Fuli Institute of Food Science, College of Biosystems
Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo
Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yiping Ren
- Yangtze
Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Meirong Ying
- Zhejiang
Grain and Oil Product Quality Inspection Center, Hangzhou 310012, China
| | - Baiyi Lu
- National
Engineering Laboratory of Intelligent Food Technology and Equipment,
Key Laboratory for Agro-Products Postharvest Handling of Ministry
of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation
of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food
Processing, Fuli Institute of Food Science, College of Biosystems
Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo
Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
13
|
Advanced Glycation End Products of Bovine Serum Albumin Suppressed Th1/Th2 Cytokine but Enhanced Monocyte IL-6 Gene Expression via MAPK-ERK and MyD88 Transduced NF-κB p50 Signaling Pathways. Molecules 2019; 24:molecules24132461. [PMID: 31277476 PMCID: PMC6652144 DOI: 10.3390/molecules24132461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGE), the most known aging biomarker, may cause “inflamm-aging” (i.e., chronic low-grade inflammation that develops with aging) in both aged and diabetes groups. However, the molecular bases of inflamm-aging remain obscure. We prepared AGE by incubating BSA (0.0746 mmol/L) + glucose (0.5 mol/L) at 37 °C in 5% CO2–95% air for 1–180 days. The lysine glycation in BSA–AGE reached 77% on day 30 and 100% after day 130, whereas the glycation of arginine and cysteine was minimal. The Nε-(carboxymethyl)-lysine content in BSA–AGE was also increased with increasing number of incubation days. The lectin-binding assay revealed that the glycation of BSA not only altered the conformational structure, but lost binding capacity with various lectins. An immunological functional assay showed that BSA–AGE > 8 μg/mL significantly suppressed normal human Th1 (IL-2 and IFN-γ) and Th2 (IL-10) mRNA expression, whereas AGE > 0.5 μg/mL enhanced monocyte IL-6 production irrelevant to cell apoptosis. The AGE-enhanced monocyte IL-6 production was via MAPK–ERK and MyD88-transduced NF-κBp50 signaling pathways. To elucidate the structure–function relationship of BSA–AGE-enhanced IL-6 production, we pre-preincubated BSA–AGE with different carbohydrate-degrading, protein-degrading, and glycoprotein-degrading enzymes. We found that trypsin and carboxypeptidase Y suppressed whereas β-galactosidase enhanced monocyte IL-6 production. In conclusion, BSA–AGE exerted both immunosuppressive and pro-inflammatory effects that are the molecular basis of inflamm-aging in aged and diabetes groups.
Collapse
|
14
|
Gomez-Soler M, Petersen Gehring M, Lechtenberg BC, Zapata-Mercado E, Hristova K, Pasquale EB. Engineering nanomolar peptide ligands that differentially modulate EphA2 receptor signaling. J Biol Chem 2019; 294:8791-8805. [PMID: 31015204 DOI: 10.1074/jbc.ra119.008213] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/18/2019] [Indexed: 11/06/2022] Open
Abstract
The EPH receptor A2 (EphA2) tyrosine kinase plays an important role in a plethora of biological and disease processes, ranging from angiogenesis and cancer to inflammation and parasitic infections. EphA2 is therefore considered an important drug target. Two short peptides previously identified by phage display, named YSA and SWL, are widely used as EphA2-targeting agents owing to their high specificity for this receptor. However, these peptides have only modest (micromolar) potency. Lack of structural information on the binding interactions of YSA and SWL with the extracellular EphA2 ligand-binding domain (LBD) has for many years precluded structure-guided improvements. We now report the high-resolution (1.53-2.20 Å) crystal structures of the YSA peptide and several of its improved derivatives in complex with the EphA2 LBD, disclosing that YSA targets the ephrin-binding pocket of EphA2 and mimics binding features of the ephrin-A ligands. The structural information obtained enabled iterative peptide modifications conferring low nanomolar potency. Furthermore, contacts observed in the crystal structures shed light on how C-terminal features can convert YSA derivatives from antagonists to agonists that likely bivalently interact with two EphA2 molecules to promote receptor oligomerization, autophosphorylation, and downstream signaling. Consistent with this model, quantitative FRET measurements in live cells revealed that the peptide agonists promote the formation of EphA2 oligomeric assemblies. Our findings now enable rational strategies to differentially modify EphA2 signaling toward desired outcomes by using appropriately engineered peptides. Such peptides could be used as research tools to interrogate EphA2 function and to develop pharmacological leads.
Collapse
Affiliation(s)
- Maricel Gomez-Soler
- From the Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Marina Petersen Gehring
- From the Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Bernhard C Lechtenberg
- From the Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Elmer Zapata-Mercado
- the Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Kalina Hristova
- the Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Elena B Pasquale
- From the Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| |
Collapse
|
15
|
Korte R, Oberleitner D, Brockmeyer J. Determination of food allergens by LC-MS: Impacts of sample preparation, food matrix, and thermal processing on peptide detectability and quantification. J Proteomics 2018; 196:131-140. [PMID: 30408562 DOI: 10.1016/j.jprot.2018.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 01/02/2023]
Abstract
Food allergies are a growing worldwide concern and the contamination of products with food allergens represents a significant health risk to allergic consumers. With the introduction of reference doses, quantitative methods are needed for the monitoring of allergen levels, and the potential of LC-MS/MS is of hugely growing interest. In this study, we demonstrate that relevant food matrices (bakery products and chocolates) and thermal food processing substantially influence the quantification of 18 marker peptides from various nut and peanut allergens via targeted proteomics. In addition, we characterize the individual release kinetics of marker peptides and provide examples for metastable marker peptide candidates. Matrix recovery rates overall ranged between 15 and 250% with the observed variation being linked to the individual peptide structure as well as to specific matrix interferences. In contrast, thermal processing considerably influences the detectability of allergens on the protein level as different marker peptides from the identical parent allergen are similarly affected, leading to a loss in signal of up to 83% in extreme cases after a 45-min simulated baking. Provided data are finally used for evaluation of different calibrators as well as the overall potential and challenges of LC-MS for the absolute quantification of food allergens. SIGNIFICANCE: With the scientific discussion moving towards a risk-based management of food allergens, including the establishment of threshold doses, robust methods for the absolute quantification of allergens in food samples are urgently needed. Because the currently used antibody- and DNA-based technologies show severe limitations in terms of specificity and reproducibility, LC-MS has emerged as a promising alternative. Its application to absolute quantification, however, first requires an understanding of the various impacts that affect quantification results, including different food matrices, sample preparation, and thermal processing of foodstuffs. Knowledge of these factors, which are assessed as part of a comprehensive survey in this study, is also an important prerequisite to evaluate means of calibration for an LC-MS-based quantification of food allergens.
Collapse
Affiliation(s)
- Robin Korte
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster 48149, Germany
| | - Daniela Oberleitner
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster 48149, Germany
| | - Jens Brockmeyer
- Institute of Biochemistry and Technical Biochemistry, Department of Food Chemistry, University of Stuttgart, Allmandring 5b, Stuttgart 70569, Germany.
| |
Collapse
|
16
|
Recent advances in covalent organic frameworks for separation and analysis of complex samples. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Tu M, Liu H, Zhang R, Chen H, Fan F, Shi P, Xu X, Lu W, Du M. Bioactive hydrolysates from casein: generation, identification, and in silico toxicity and allergenicity prediction of peptides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3416-3426. [PMID: 29280148 DOI: 10.1002/jsfa.8854] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Bioactive casein peptides have attracted considerable attention for their applications in industry. However, there is little clarity regarding mass spectrometric profiles for peptides in enzymatic hydrolysates of casein produced under varying conditions. In this study, the compositions of the peptides from casein hydrolysates were compared for different enzyme/substrate ratio (E/S) and hydrolysis times. The toxicity, allergenicity and bioactivity of the identified peptides were assessed in silico. RESULTS A total of 70 unique peptides were identified, and there were 28, 21, 13 and 8 peptides from αs1 -casein, αs2 -casein, β-casein and κ-casein respectively. The peptide number decreased with the increase in E/S and hydrolysis time. Moreover, peptides with relative molecular mass Mr ranging from 1000 to 1500 Da occupied the highest proportion of 31.43%, and almost all of the peptides showed Mr less than 5000 Da. In silico analysis showed that all of the peptides were non-toxic and non-allergenic, and several of them were assessed by PeptideRanker as having a relatively high likelihood of being bioactive peptides. CONCLUSIONS Composition of the peptides in the casein hydrolysates varied with the enzymolysis conditions. This study's results may facilitate the production of target bioactive peptides by controlling E/S and hydrolysis time, which is beneficial for the application of casein peptides in the functional food industry. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maolin Tu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Ruyi Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Fengjiao Fan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Pujie Shi
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xianbing Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Weihong Lu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Ming Du
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
18
|
Shen X, Sun L. Systematic Evaluation of Immobilized Trypsin-Based Fast Protein Digestion for Deep and High-Throughput Bottom-Up Proteomics. Proteomics 2018; 18:e1700432. [PMID: 29577644 DOI: 10.1002/pmic.201700432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/02/2018] [Indexed: 11/08/2022]
Abstract
Immobilized trypsin (IM) has been recognized as an alternative to free trypsin (FT) for accelerating protein digestion 30 years ago. However, some questions of IM still need to be answered. How does the solid matrix of IM influence its preference for protein cleavage and how well can IM perform for deep bottom-up proteomics compared to FT? By analyzing Escherichia coli proteome samples digested with amine or carboxyl functionalized magnetic bead-based IM (IM-N or IM-C) or FT, it is observed that IM-N with the nearly neutral solid matrix, IM-C with the negatively charged solid matrix, and FT have similar cleavage preference considering the microenvironment surrounding the cleavage sites. IM-N (15 min) and FT (12 h) both approach 9000 protein identifications (IDs) from a mouse brain proteome. Compared to FT, IM-N has no bias in the digestion of proteins that are involved in various biological processes, are located in different components of cells, have diverse functions, and are expressed in varying abundance. A high-throughput bottom-up proteomics workflow comprising IM-N-based rapid protein cleavage and fast CZE-MS/MS enables the completion of protein sample preparation, CZE-MS/MS analysis, and data analysis in only 3 h, resulting in 1000 protein IDs from the mouse brain proteome.
Collapse
Affiliation(s)
- Xiaojing Shen
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
Rocklin GJ, Chidyausiku TM, Goreshnik I, Ford A, Houliston S, Lemak A, Carter L, Ravichandran R, Mulligan VK, Chevalier A, Arrowsmith CH, Baker D. Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 2018; 357:168-175. [PMID: 28706065 PMCID: PMC5568797 DOI: 10.1126/science.aan0693] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/09/2017] [Indexed: 12/18/2022]
Abstract
Proteins fold into unique native structures stabilized by thousands of weak interactions that collectively overcome the entropic cost of folding. Although these forces are "encoded" in the thousands of known protein structures, "decoding" them is challenging because of the complexity of natural proteins that have evolved for function, not stability. We combined computational protein design, next-generation gene synthesis, and a high-throughput protease susceptibility assay to measure folding and stability for more than 15,000 de novo designed miniproteins, 1000 natural proteins, 10,000 point mutants, and 30,000 negative control sequences. This analysis identified more than 2500 stable designed proteins in four basic folds-a number sufficient to enable us to systematically examine how sequence determines folding and stability in uncharted protein space. Iteration between design and experiment increased the design success rate from 6% to 47%, produced stable proteins unlike those found in nature for topologies where design was initially unsuccessful, and revealed subtle contributions to stability as designs became increasingly optimized. Our approach achieves the long-standing goal of a tight feedback cycle between computation and experiment and has the potential to transform computational protein design into a data-driven science.
Collapse
Affiliation(s)
- Gabriel J Rocklin
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Tamuka M Chidyausiku
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.,Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA 98195, USA
| | - Inna Goreshnik
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alex Ford
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.,Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA 98195, USA
| | - Scott Houliston
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alexander Lemak
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Lauren Carter
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Vikram K Mulligan
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Aaron Chevalier
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Deng Z, Wang Y, Mao J, Ye M. Investigating the Relationship between the Substrates' Consumption and Their Abundances in a Complex Enzymatic System. Anal Chem 2017; 89:10644-10648. [PMID: 28972787 DOI: 10.1021/acs.analchem.7b03616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzymatic process involving the incubation of a library of substrates with an enzyme is the key step for a few important experiments for bioanalytical chemistry including proteomics analysis, enzymatic labeling, substrate screening, etc. The relationship between the substrates' consumption and their abundances in a complex enzymatic system with a huge number of coexisting substrates of different abundances was not well-known. In this study, we have demonstrated theoretically and experimentally that the priority of substrate consumption depended on their specificity constants but not abundances. We derived the expression between the fractions of the substrates consumed (pi) and their specificity constants. Using the enzymatic system of five synthetic peptide substrates of trypsin, we validated through 24 experiments that the ln(1 - pi) values of competing substrates have linear correlation with their specificity constants, and thus, the priority of substrate depletion has no relation with their abundances. Using a state of the art quantitative proteomics approach, we found that the ln(1 - pi) values of 144 competing substrates between any two of four experiments have a linear relationship and the prioritization of substrates can be achieved by sorting their consumption rates in the experiment. This study will improve our understanding of the enzymatic kinetics in the complex system and will benefit the design of enzymatic analytical approaches.
Collapse
Affiliation(s)
- Zhenzhen Deng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian, Liaoning 116023, China
| |
Collapse
|
21
|
Wang S, Wang Y, Song L, Chen J, Ma Y, Chen Y, Fan S, Su M, Lin X. Decellularized tendon as a prospective scaffold for tendon repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1290-1301. [DOI: 10.1016/j.msec.2017.03.279] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/12/2016] [Accepted: 03/28/2017] [Indexed: 01/12/2023]
|
22
|
Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families. Sci Rep 2017; 7:43135. [PMID: 28230157 PMCID: PMC5322338 DOI: 10.1038/srep43135] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
Internally quenched fluorescent (IQF) peptide substrates originating from FRET (Förster Resonance Energy Transfer) are powerful tool for examining the activity and specificity of proteases, and a variety of donor/acceptor pairs are extensively used to design individual substrates and combinatorial libraries. We developed a highly sensitive and adaptable donor/acceptor pair that can be used to investigate the substrate specificity of cysteine proteases, serine proteases and metalloproteinases. This novel pair comprises 7-amino-4-carbamoylmethylcoumarin (ACC) as the fluorophore and 2,4-dinitrophenyl-lysine (Lys(DNP)) as the quencher. Using caspase-3, caspase-7, caspase-8, neutrophil elastase, legumain, and two matrix metalloproteinases (MMP2 and MMP9), we demonstrated that substrates containing ACC/Lys(DNP) exhibit 7 to 10 times higher sensitivity than conventional 7-methoxy-coumarin-4-yl acetic acid (MCA)/Lys(DNP) substrates; thus, substantially lower amounts of substrate and enzyme can be used for each assay. We therefore propose that the ACC/Lys(DNP) pair can be considered a novel and sensitive scaffold for designing substrates for any group of endopeptidases. We further demonstrate that IQF substrates containing unnatural amino acids can be used to investigate protease activities/specificities for peptides containing post-translationally modified amino acids. Finally, we used IQF substrates to re-investigate the P1-Asp characteristic of caspases, thus demonstrating that some human caspases can also hydrolyze substrates after glutamic acid.
Collapse
|
23
|
Pan Y, Mao J, Deng Z, Dong M, Bian Y, Ye M, Zou H. The proteomic analysis improved by cleavage kinetics-based fractionation of tryptic peptides. Proteomics 2016; 15:3613-6. [PMID: 26256691 DOI: 10.1002/pmic.201400498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 07/26/2015] [Accepted: 08/06/2015] [Indexed: 01/02/2023]
Abstract
Selective enrichment of specific peptides is an effective way to identify low abundance proteins. Fractionation of peptides prior to mass spectrometry is another widely used approach to reduce sample complexity in order to improve proteome coverage.In this study, we designed a multi-stage digestion strategy to generate peptides with different trypsin cleavage kinetics. It was found that each of the collected peptide fractions yielded many new protein identifications compared to the control group due to the reduced complexity. The overlapping peptides identified between adjacent fractions were very low, indicating that each fraction had different sets of peptides. The multi-stage digestion strategy separates tryptic peptides with different cleavage kinetics while RPLC separates peptides with different hydrophobicity. These two separation strategies were highly orthogonal, and showed an effective multidimensional separation to improve proteome coverage.
Collapse
Affiliation(s)
- Yanbo Pan
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiawei Mao
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhenzhen Deng
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Mingming Dong
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yangyang Bian
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Mingliang Ye
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Hanfa Zou
- Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
24
|
Xian F, Zi J, Wang Q, Lou X, Sun H, Lin L, Hou G, Rao W, Yin C, Wu L, Li S, Liu S. Peptide Biosynthesis with Stable Isotope Labeling from a Cell-free Expression System for Targeted Proteomics with Absolute Quantification. Mol Cell Proteomics 2016; 15:2819-28. [PMID: 27234506 DOI: 10.1074/mcp.o115.056507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Because of its specificity and sensitivity, targeted proteomics using mass spectrometry for multiple reaction monitoring is a powerful tool to detect and quantify pre-selected peptides from a complex background and facilitates the absolute quantification of peptides using isotope-labeled forms as internal standards. How to generate isotope-labeled peptides remains an urgent challenge for accurately quantitative targeted proteomics on a large scale. Herein, we propose that isotope-labeled peptides fused with a quantitative tag could be synthesized through an expression system in vitro, and the homemade peptides could be enriched by magnetic beads with tag-affinity and globally quantified based on the corresponding multiple reaction monitoring signals provided by the fused tag. An Escherichia coli cell-free protein expression system, protein synthesis using recombinant elements, was adopted for the synthesis of isotope-labeled peptides fused with Strep-tag. Through a series of optimizations, we enabled efficient expression of the labeled peptides such that, after Strep-Tactin affinity enrichment, the peptide yield was acceptable in scale for quantification, and the peptides could be completely digested by trypsin to release the Strep-tag for quantification. Moreover, these recombinant peptides could be employed in the same way as synthetic peptides for multiple reaction monitoring applications and are likely more economical and useful in a laboratory for the scale of targeted proteomics. As an application, we synthesized four isotope-labeled glutathione S-transferase (GST) peptides and added them to mouse sera pre-treated with GST affinity resin as internal standards. A quantitative assay of the synthesized GST peptides confirmed the absolute GST quantification in mouse sera to be measurable and reproducible.
Collapse
Affiliation(s)
- Feng Xian
- From the ‡CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; §BGI-Shenzhen, Shenzhen, 518083, China; ¶Sino-Danish Center for Education and Research, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin Zi
- §BGI-Shenzhen, Shenzhen, 518083, China
| | - Quanhui Wang
- From the ‡CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; §BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaomin Lou
- From the ‡CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haidan Sun
- From the ‡CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Lin
- §BGI-Shenzhen, Shenzhen, 518083, China
| | - Guixue Hou
- From the ‡CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; §BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Lin Wu
- From the ‡CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuwei Li
- ‖Institute for Bioscience and Biotechnology Research, University of Maryland College Park, Rockville, Maryland 20850;
| | - Siqi Liu
- From the ‡CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; §BGI-Shenzhen, Shenzhen, 518083, China; ¶Sino-Danish Center for Education and Research, University of the Chinese Academy of Sciences, Beijing, 100049, China;
| |
Collapse
|
25
|
Last D, Müller J, Dawood AWH, Moldenhauer EJ, Pavlidis IV, Bornscheuer UT. Highly efficient and easy protease-mediated protein purification. Appl Microbiol Biotechnol 2015; 100:1945-1953. [DOI: 10.1007/s00253-015-7206-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 11/29/2022]
|
26
|
Guo M, Zhai Y, Guo C, Liu Y, Tang D, Pan Y. A new strategy to determine the protein mutation site using matrix-assisted laser desorption ionization in-source decay: Derivatization by ionic liquid. Anal Chim Acta 2015; 865:31-8. [DOI: 10.1016/j.aca.2015.01.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
|