1
|
Yang Y, Yang L, Zheng M, Cao D, Liu G. Data acquisition methods for non-targeted screening in environmental analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
2
|
Trends and perspectives in per-and polyfluorinated alkyl substances (PFASs) determination: Faster and broader. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
3
|
|
4
|
Applicability of mixed-mode chromatography for the simultaneous analysis of C 1-C 18 perfluoroalkylated substances. Anal Bioanal Chem 2020; 412:4849-4856. [PMID: 32006062 DOI: 10.1007/s00216-020-02434-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
A new analytical method for the determination of 22 perfluoroalkylated (carboxylic and sulfonic) acids in water samples is presented. The method's objective was to achieve the simultaneous quantification of compounds with different chain lengths (from C1 to C18). To this end, 500 mL of water were extracted with Oasis WAX solid-phase extraction cartridges and eluted with 3 mL of 5% ammonia in methanol. After evaporation to dryness, extracts were reconstituted in methanol:ultrapure water (1:1) and analyzed by mixed-mode liquid chromatography-tandem mass spectrometry (MMLC-MS/MS) using a weak anion exchange/reversed-phase column. The method provided good results, with limits of quantification lower than 1 ng/L in river water for most of compounds, except the two perfluorocarboxylic acids with the longest alkyl chain (>C14) and trifluoroacetic acid, for which a blank contamination problem was observed. The method proved good trueness and precision in both ultrapure and river water (R ≥ 81%, RSD ≤ 15%). After validation, the method was applied to the analysis of nine water samples where nine perfluoroalkylated acids were quantified. Seven of them were ultrashort- (C1-C4) and short-chain (C4-C8) perfluoroalkylated acids, pointing out the importance of developing methods capable to target such substances for further monitoring.
Collapse
|
5
|
Ateia M, Maroli A, Tharayil N, Karanfil T. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. CHEMOSPHERE 2019; 220:866-882. [PMID: 33395808 DOI: 10.1016/j.chemosphere.2018.12.186] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 05/28/2023]
Abstract
Poly- and perfluorinated substances (PFAS) comprise more than 3000 individual compounds; nevertheless, most studies to date have focused mainly on the fate, transport and remediation of long-chain PFAS (C > 7). The main objective of this article is to provide the first critical review of the peer-reviewed studies on the analytical methods, occurrence, mobility, and treatment for ultra-short-chain PFAS (C = 2-3) and short-chain PFAS (C = 4-7). Previous studies frequently detected ultra-short-chain and short-chain PFAS in various types of aqueous environments including seas, oceans, rivers, surface/urban runoffs, drinking waters, groundwaters, rain/snow, and deep polar seas. Besides, the recent regulations and restrictions on the use of long-chain PFAS has resulted in a significant shift in the industry towards short-chain alternatives. However, our understanding of the environmental fate and remediation of these ultra-short-chain and short-chain PFAS is still fragmentary. We have also covered the handful studies involving the removal of ultra-short and short-chain PFAS and identified the future research needs.
Collapse
Affiliation(s)
- Mohamed Ateia
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, USA
| | - Amith Maroli
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, USA
| | - Nishanth Tharayil
- Department of Plant & Environmental Sciences, Clemson University, SC 29634, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, USA.
| |
Collapse
|
6
|
Lorenzo M, Campo J, Picó Y. Analytical challenges to determine emerging persistent organic pollutants in aquatic ecosystems. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
A survey of analytical methods employed for monitoring of Advanced Oxidation/Reduction Processes for decomposition of selected perfluorinated environmental pollutants. Talanta 2018; 177:122-141. [DOI: 10.1016/j.talanta.2017.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 02/05/2023]
|
8
|
Ruan T, Jiang G. Analytical methodology for identification of novel per- and polyfluoroalkyl substances in the environment. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Screening of Over 600 Pesticides, Veterinary Drugs, Food-Packaging Contaminants, Mycotoxins, and Other Chemicals in Food by Ultra-High Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-QTOFMS). FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0678-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Li CY, Song HT, Liu SJ, Wang Q, Dai GL, Ding XS, Ju WZ. Systematic screening and characterization of astragalosides in an oral solution of Radix Astragali by liquid chromatography with quadrupole time-of-flight mass spectrometry and Peakview software. J Sep Sci 2016; 39:1099-109. [PMID: 27027590 DOI: 10.1002/jssc.201501278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Abstract
Liquid chromatography with quadrupole time-of-flight mass spectrometry coupled with automated data analysis by Peakview software was employed to systematically screen and characterize the astragalosides in Radix Astragali, a Chinese medical preparation. The separation was performed on a poroshell 120 SB-C18 column equipped in a conventional liquid chromatography system. After being separated using a general gradient elution, the analytes were detected by the triple quadrupole time-of-flight mass spectrometer in both positive- and negative-ion modes. The mass defect filtering function built in the Peakview software was utilized to rapidly screen the potential ions of interest, while some functions of Peakview such as Formula Finder, XIC manager, and IDA Explorer were employed to facilitate the assignment or characterization of the screened astragalosides. A total of 42 astragalosides were screened and tentatively characterized or assigned, and 20 of them were firstly detected in Radix Astragali. According to the screened astragalosides, acetylation, glycosidation, hydrogenation, oxidation, and hydration were considered to be the major secondary metabolic pathways involved in the formation of the astragalosides. The combination of liquid chromatography with quadrupole time-of-flight mass spectrometry and automated Peakview analysis is a feasible and efficient tool to screen and identify the constituents in complex matrices of herbal medicines.
Collapse
Affiliation(s)
- Chang-Yin Li
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui-Ting Song
- School of pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shi-Jia Liu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiong Wang
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Guo-Liang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan-Sheng Ding
- School of pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wen-Zheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Simultaneous qualitative and quantitative analysis of fluoroalkyl sulfonates in riverine water by liquid chromatography coupled with Orbitrap high resolution mass spectrometry. J Chromatogr A 2016; 1435:66-74. [PMID: 26810809 DOI: 10.1016/j.chroma.2016.01.039] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/30/2015] [Accepted: 01/14/2016] [Indexed: 02/05/2023]
Abstract
In this study, a robust method for quick screening, confirmation and quantification analysis of eight fluoroalkyl sulfonates in surface riverine samples was developed using ultra-high performance liquid chromatography-high resolution mass spectrometer (LC-Orbitrap Tribrid HRMS). Weak anion exchange solid phase extraction was optimized to maximum recover perfluoroalkyl sulfonates (PFSAs), fluorotelomer sulfonates and the emerging 6:2 chlorinated polyfluoroalkyl ether sulfonate at the same time. Both qualitative and quantitative purposes could be achieved by simultaneous acquiring full-scan mass spectrum (MS(1)) and data-dependent MS(2) data. The LC-Orbitrap Tribrid HRMS method showed competent method detection limits for all analytes (7.1-62 pg/L) compared with the triple quadrupole mass spectrometry (LC-MS/MS) quantification method (12-54 pg/L), and satisfactory method validation results were also obtained in linearity (R(2)>0.999), trueness (88-118%), precision (2-17%) and recovery (63-103%). A good correlation (R>0.999) was found between the sets of quantified PFSA residue concentrations in thirteen estuary river samples by both the LC-Orbitrap Tribrid HRMS (0.2-440 ng/L) and LC-MS/MS (0.1-424 ng/L) methods, indicating that Orbitrap Tribrid HRMS could be used for reliable quantitative analysis purpose. Moreover, the LC-Orbitrap Tribrid HRMS method could also benefit from its high mass resolution characteristic to eliminate potential environment interferents (e.g., taurodeoxycholate) and to quantify all PFSA isomers based on full-scan MS(1) chromatogram at a narrow MS window (5 part per million).
Collapse
|
12
|
Iadarola P, Fumagalli M, Bardoni AM, Salvini R, Viglio S. Recent applications of CE- and HPLC-MS in the analysis of human fluids. Electrophoresis 2015; 37:212-30. [PMID: 26426542 DOI: 10.1002/elps.201500272] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 01/08/2023]
Abstract
The present review intends to cover the literature on the use of CE-/LC-MS for the analysis of human fluids, from 2010 until present. It has been planned to provide an overview of the most recent practical applications of these techniques to less extensively used human body fluids, including, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate, tear fluid, breast fluid, amniotic fluid, and cerumen. Potential pitfalls related to fluid collection and sample preparation, with particular attention to sample clean-up procedures, and methods of analysis, from the research laboratory to a clinical setting will also be addressed. While being apparent that proteomics/metabolomics represent the most prominent approaches for global identification/quantification of putative biomarkers for a variety of human diseases, evidence is also provided of the suitability of these sophisticated techniques for the detection of heterogeneous components carried by these fluids.
Collapse
Affiliation(s)
- Paolo Iadarola
- Department of Biology and Biotechnologies "L. Spallanzani,", Biochemistry Unit, University of Pavia, Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnologies "L. Spallanzani,", Biochemistry Unit, University of Pavia, Italy
| | - Anna Maria Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Roberta Salvini
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| |
Collapse
|