1
|
Chan TYH, Chen B, Tang W, Chan HH, Wong YKH, Wong ECL, Liao J, Ng ACK, Wong JSY, Leung GKK, Kiang KM. Non-immune targeting of CXCR3 compromises mitochondrial function and suppresses tumor growth in glioblastoma. Cell Death Discov 2025; 11:143. [PMID: 40185710 PMCID: PMC11971461 DOI: 10.1038/s41420-025-02449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
The chemokine receptor CXCR3 is traditionally recognized for its role in immune cell trafficking. However, emerging evidence suggests that its functions may extend beyond the immune system, particularly in cancer, where its roles remain to be elucidated. In this study, we demonstrated that CXCR3 expression correlates with glioblastoma (GBM) grading, with CXCR3-A isoform being associated with poorer patient prognosis compared to CXCR3-B. Ablation of both CXCR3 isoforms significantly impaired GBM cell proliferation, migration, and tumor growth both in vitro and in immunodeficient mice. To elucidate the mechanistic role of CXCR3, we conducted transcriptomic profiling of tumor xenografts, revealing that CXCR3 depletion would disrupt mitochondrial homeostasis. This was further supported by our findings that CXCR3 would localize to the mitochondrial membrane, and that inhibition of CXCR3 would lead to mitochondrial depolarization and increased reactive oxygen species production. Notably, activation of phosphorylated-STAT3 rescued cell viability in CXCR3-depleted cells, suggesting that CXCR3 may modulate mitochondrial function through a STAT3-dependent mechanism, consistent with the known functional role of STAT3 in maintaining mitochondrial redox balance. Furthermore, treatment with the selective CXCR3 antagonist AMG487 reduced tumor growth and disrupted mitochondrial function in vitro, in vivo, and in patient-derived GBM stem cells. Our findings reveal CXCR3 as a previously unrecognized regulator of mitochondrial function in cancer cells, positioning the CXCR3-mitochondrial signaling axis as a promising therapeutic target for GBM. Chemokine receptors are well-established mediators of inflammatory responses, emerging evidence suggests that these receptors may play roles beyond the immune system. In this study, we have demonstrated that CXCR3 would localize to the mitochondrial membrane and exert a previously unrecognized function in regulating cancer metabolism and mitochondrial function. Figure created using BioRender ( https://biorender.com ).
Collapse
Affiliation(s)
- Travis Yui Hei Chan
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wanjun Tang
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Henry Hei Chan
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yogesh K H Wong
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ethan C L Wong
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Junbo Liao
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anson Cho-Kiu Ng
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jenny Sum Yee Wong
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Karrie M Kiang
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Alomar HA, Al-Mazroua HA, Ibrahim KE, Alshamrani AA, Al-Hamamah MA, Alfardan AS, Attia SM. CXCR3 antagonist NBI-74330 mitigates joint inflammation in Collagen-Induced arthritis model in DBA/1J mice. Int Immunopharmacol 2023; 118:110099. [PMID: 37018975 DOI: 10.1016/j.intimp.2023.110099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. We used the CXCR3-specific antagonist NBI-74330 to block T-cell-mediated signaling in a DBA/1J mouse model of collagen-induced arthritis (CIA). After CIA induction, DBA/1J mice were treated with NBI-74330 (100 mg/kg) daily from day 21 until day 34 and evaluated for arthritic score and histopathological changes. Furthermore, using flow cytometry, we investigated the effects of NBI-74330 on Th1 (IFN-γ, TNF-α, T-bet, STAT4, Notch-3, and RANKL), Th17 (IL-21, IL-17A, STAT3, and RORγt), and Th22 (IL-22) cells in splenic CD4+ and CXCR3+T-cells. We also used RT-PCR to assess the effect of mRNA levels of IFN-γ, TNF-α, T-bet, RANKL, IL-17A, RORγt, and IL-22 in knee tissues. The IFN-γ, TNF-α, and IL-17A serum protein levels were measured using ELISA. Compared to vehicle-treated CIA mice, the severity of arthritic scores and histological severity of inflammation decreased significantly in NBI-74330-treated CIA mice. Moreover, compared to vehicle-treated CIA mice, the percentages of CD4+IFN-γ+, CD4+TNF-α+, CD4+T-bet+, CD4+STAT4+, CD4+Notch-3+, CXCR3+IFN-γ+, CXCR3+TNF-α+, CXCR3+T-bet+, CXCR3+STAT4+, CXCR3+Notch-3+, CD4+RANKL+, CD4+IL-21+, CD4+IL-17A+, CD4+STAT3+, CD4+RORγt+, and CD4+IL-22+ cells decreased in NBI-74330-treated CIA mice. Furthermore, NBI-74330-treatment downregulated IFN-γ, TNF-α, T-bet, RANKL, STAT3, IL-17A, RORγt, and IL-22 mRNA levels. Serum IFN-γ, TNF-α, and IL-17A levels were significantly lower in NBI-74330-treated CIA mice than in vehicle-treated CIA mice. This study demonstrates the antiarthritic effects of NBI-74330 in CIA mice. Therefore, these data suggest that NBI-74330 could be considered a potential RA treatment.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Chen Z, Wang J, Yuan J, Wang Z, Tu Z, Crommen J, Luo W, Guo J, Zhang T, Jiang Z. Rapid screening of neuraminidase inhibitors using an at-line nanofractionation platform involving parallel oseltamivir-sensitive/resistant neuraminidase bioassays. J Chromatogr A 2023; 1687:463693. [PMID: 36516530 DOI: 10.1016/j.chroma.2022.463693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
In this study, an advanced at-line nanofractionation based screening platform was developed to screen potential neuraminidase inhibitors (NAIs) from Lonicera japonica Thunb by involving two parallel bioassays, for determining both oseltamivir-sensitive neuraminidase (NAS) and oseltamivir-resistant neuraminidase (NAR) inhibitory activities. 20 potential NAIs with both NAS and NAR inhibitory effects were screened from Lonicera japonica Thunb and identified by mass spectrometer, including 11 phenolic acids, 8 flavonoids and one iridoid glycoside. The proposed at-line nanofractionation based screening platform for NAIs was also used to rapidly screen nine batches of water extracts of Lonicera japonica Thunb or its similar species. Clear differences in the number and content of active components were easily observed, demonstrating that the proposed method possesses great potential for the quality control of herb medicines.
Collapse
Affiliation(s)
- Zhixu Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jincai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jiaming Yuan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhengchao Tu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000, Liege, Belgium
| | - Wenhui Luo
- Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, 528000, China
| | - Jialiang Guo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China; School of Stomatology and Medicine, Foshan University, Foshan, 528000, China.
| | - Tingting Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhengjin Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Cxcl9l and Cxcr3.2 regulate recruitment of osteoclast progenitors to bone matrix in a medaka osteoporosis model. Proc Natl Acad Sci U S A 2020; 117:19276-19286. [PMID: 32719141 PMCID: PMC7431079 DOI: 10.1073/pnas.2006093117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone remodeling requires a balanced interplay of osteoblasts and osteoclasts. While the intercellular signaling that triggers bone cell differentiation is well understood, it remains unclear how bone progenitor cells are recruited to remodeling sites. Various chemokines are upregulated under osteoporotic conditions. However, whether they are involved in progenitor recruitment or instead have inflammatory roles is unknown. Here we used a medaka fish osteoporosis model to identify the chemokine ligand Cxcl9l and receptor Cxcr3.2 as essential to control osteoclast progenitor recruitment and differentiation at bone resorption sites. Cxcr3.2 activity can be blocked by small-molecule inhibitors that protect bone from osteoporotic insult. Our study demonstrates the potential of fish for osteoporosis drug discovery and opens avenues for future osteoporosis therapy. Bone homeostasis requires continuous remodeling of bone matrix to maintain structural integrity. This involves extensive communication between bone-forming osteoblasts and bone-resorbing osteoclasts to orchestrate balanced progenitor cell recruitment and activation. Only a few mediators controlling progenitor activation are known to date and have been targeted for intervention of bone disorders such as osteoporosis. To identify druggable pathways, we generated a medaka (Oryzias latipes) osteoporosis model, where inducible expression of receptor-activator of nuclear factor kappa-Β ligand (Rankl) leads to ectopic formation of osteoclasts and excessive bone resorption, which can be assessed by live imaging. Here we show that upon Rankl induction, osteoblast progenitors up-regulate expression of the chemokine ligand Cxcl9l. Ectopic expression of Cxcl9l recruits mpeg1-positive macrophages to bone matrix and triggers their differentiation into osteoclasts. We also demonstrate that the chemokine receptor Cxcr3.2 is expressed in a distinct subset of macrophages in the aorta-gonad-mesonephros (AGM). Live imaging revealed that upon Rankl induction, Cxcr3.2-positive macrophages get activated, migrate to bone matrix, and differentiate into osteoclasts. Importantly, mutations in cxcr3.2 prevent macrophage recruitment and osteoclast differentiation. Furthermore, Cxcr3.2 inhibition by the chemical antagonists AMG487 and NBI-74330 also reduced osteoclast recruitment and protected bone integrity against osteoporotic insult. Our data identify a mechanism for progenitor recruitment to bone resorption sites and Cxcl9l and Cxcr3.2 as potential druggable regulators of bone homeostasis and osteoporosis.
Collapse
|
5
|
Otvos RA, van Nierop P, Niessen WMA, Kini RM, Somsen GW, Smit AB, Kool J. Development of an Online Cell-Based Bioactivity Screening Method by Coupling Liquid Chromatography to Flow Cytometry with Parallel Mass Spectrometry. Anal Chem 2016; 88:4825-32. [DOI: 10.1021/acs.analchem.6b00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Reka A. Otvos
- Division
of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan
1083, 1081 HV Amsterdam, The Netherlands
- Department
of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Pim van Nierop
- Department
of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wilfried M. A. Niessen
- Division
of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan
1083, 1081 HV Amsterdam, The Netherlands
- hyphen MassSpec, Herenweg 95, 2361
EK Warmond, The Netherlands
| | - R. Manjunatha Kini
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, 117543, Singapore
| | - Govert W. Somsen
- Division
of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan
1083, 1081 HV Amsterdam, The Netherlands
| | - August B. Smit
- Department
of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jeroen Kool
- Division
of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan
1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Otvos RA, Mladic M, Arias-Alpizar G, Niessen WMA, Somsen GW, Smit AB, Kool J. At-Line Cellular Screening Methodology for Bioactives in Mixtures Targeting the α7-Nicotinic Acetylcholine Receptor. ACTA ACUST UNITED AC 2016; 21:459-67. [DOI: 10.1177/1087057115625307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/11/2015] [Indexed: 01/03/2023]
Abstract
The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel expressed in different regions of the central nervous system (CNS). The α7-nAChR has been associated with Alzheimer’s disease, epilepsy, and schizophrenia, and therefore is extensively studied as a drug target for the treatment of these diseases. Important sources for new compounds in drug discovery are natural extracts. Since natural extracts are complex mixtures, identification of the bioactives demands the use of analytical techniques to separate a bioactive from inactive compounds. This study describes screening methodology for identifying bioactive compounds in mixtures acting on the α7-nAChR. The methodology developed combines liquid chromatography (LC) coupled via a split with both an at-line calcium (Ca2+)-flux assay and high-resolution mass spectrometry (MS). This allows evaluation of α7-nAChR responses after LC separation, while parallel MS enables compound identification. The methodology was optimized for analysis of agonists and positive allosteric modulators, and was successfully applied to screening of the hallucinogen mushroom Psilocybe Mckennaii. The crude mushroom extract was analyzed using both reversed-phase and hydrophilic interaction liquid chromatography. Matching retention times and peak shapes of bioactives found with data from the parallel MS measurements allowed rapid pinpointing of accurate masses corresponding to the bioactives.
Collapse
Affiliation(s)
- Reka A. Otvos
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marija Mladic
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gabriela Arias-Alpizar
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wilfried M. A. Niessen
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- hyphen MassSpec, Warmond, the Netherlands
| | - Govert W. Somsen
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Kool
- AIMMS Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Mladic M, Scholten DJ, Niessen WMA, Somsen GW, Smit MJ, Kool J. At-line coupling of LC-MS to bioaffinity and selectivity assessment for metabolic profiling of ligands towards chemokine receptors CXCR1 and CXCR2. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1002:42-53. [PMID: 26301479 DOI: 10.1016/j.jchromb.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 11/28/2022]
Abstract
This study describes an analytical method for bioaffinity and selectivity assessment of CXCR2 antagonists and their metabolites. The method is based on liquid chromatographic separation (LC) of metabolic mixtures followed by parallel mass spectrometry (MS) identification and bioaffinity determination. The bioaffinity is assessed using radioligand binding assays in 96-well plates after at-line nanofractionation. The described method was optimized for chemokines and low-molecular weight CXCR2 ligands. The limits of detection (LODs; injected amounts) for MK-7123, a high affinity binder to both CXCR1 and CXCR2 receptors belonging to the diaminocyclobutendione chemical class, were 40pmol in CXCR1 binding and 8pmol in CXCR2 binding. For CXCL8, the LOD was 5pmol in both binding assays. A control compound was always taken along with each bioassay plate as triplicate dose-response curve. For MK-7123, the calculated IC50 values were 314±59nM (CXCR1 binding) and 38±11nM (CXCR2 binding). For CXCL8, the IC50 values were 6.9±1.4nM (CXCR1 binding) and 2.7±1.3nM (CXCR2 binding). After optimization, the method was applied to the analysis of metabolic mixtures of eight LMW CXCR2 antagonists generated by incubation with pig liver microsomes. Moreover, metabolic profiling of the MK-7123 compound was described using the developed method. Three bioactive metabolites were found, two of which were (partially) identified. This method is suitable for bioaffinity and selectivity assessment of mixtures targeting the CXCR2. In contrary to conventional LC-MS based metabolic profiling studies done at the early lead discovery stage, additional qualitative bioactivity information of drug metabolites is obtained with the method described.
Collapse
Affiliation(s)
- Marija Mladic
- Amsterdam Institute for Molecules Medicines and Systems, Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Danny J Scholten
- Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Wilfried M A Niessen
- Amsterdam Institute for Molecules Medicines and Systems, Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; hyphen MassSpec, de Wetstraat 8, 2332XT Leiden, The Netherlands
| | - Govert W Somsen
- Amsterdam Institute for Molecules Medicines and Systems, Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Jeroen Kool
- Amsterdam Institute for Molecules Medicines and Systems, Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| |
Collapse
|