1
|
Petrovic D, Slade L, Paikopoulos Y, D'Andrea D, Savic N, Stancic A, Miljkovic JL, Vignane T, Drekolia MK, Mladenovic D, Sutulovic N, Refeyton A, Kolakovic M, Jovanovic VM, Zivanovic J, Miler M, Vellecco V, Brancaleone V, Bucci M, Casey AM, Yu C, Kasarla SS, Smith KW, Kalfe-Yildiz A, Stenzel M, Miranda-Vizuete A, Hergenröder R, Phapale P, Stanojlovic O, Ivanovic-Burmazovic I, Vlaski-Lafarge M, Bibli SI, Murphy MP, Otasevic V, Filipovic MR. Ergothioneine improves healthspan of aged animals by enhancing cGPDH activity through CSE-dependent persulfidation. Cell Metab 2025; 37:542-556.e14. [PMID: 39842434 DOI: 10.1016/j.cmet.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/22/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
Ergothioneine (ET), a dietary thione/thiol, is receiving growing attention for its possible benefits in healthy aging and metabolic resilience. Our study investigates ET's effects on healthspan in aged animals, revealing lifespan extension and enhanced mobility in Caenorhabditis elegans, accompanied by improved stress resistance and reduced age-associated biomarkers. In aged rats, ET administration enhances exercise endurance, muscle mass, and vascularization, concomitant with higher NAD+ levels in muscle. Mechanistically, ET acts as an alternative substrate for cystathionine gamma-lyase (CSE), stimulating H2S production, which increases protein persulfidation of more than 300 protein targets. Among these, protein-persulfidation-driven activation of cytosolic glycerol-3-phosphate dehydrogenase (cGPDH) primarily contributes to the ET-induced NAD+ increase. ET's effects are abolished in models lacking CSE or cGPDH, highlighting the essential role of H2S signaling and protein persulfidation. These findings elucidate ET's multifaceted actions and provide insights into its therapeutic potential for combating age-related muscle decline and metabolic perturbations.
Collapse
Affiliation(s)
- Dunja Petrovic
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | - Luke Slade
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | | | - Davide D'Andrea
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | - Nevena Savic
- Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Stancic
- Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jan Lj Miljkovic
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Thibaut Vignane
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | - Maria Kyriaki Drekolia
- Department of Vascular Dysfunction, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dusan Mladenovic
- Institute for Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Sutulovic
- Laboratory for Neurophysiology, Institute for Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Alice Refeyton
- Inserm U1211 Maladies Rares: Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Milica Kolakovic
- Department of Chemistry, Ludwig Maximilians University of Munich, Munich, Germany
| | - Vladimir M Jovanovic
- Bioinformatics Solution Center, Institute for Informatics, Freie Universität Berlin, Berlin, Germany
| | - Jasmina Zivanovic
- Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marko Miler
- Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alva M Casey
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge CB2 0XY, UK
| | - ChakShun Yu
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge CB2 0XY, UK
| | | | | | | | - Martin Stenzel
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Prasad Phapale
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | - Olivera Stanojlovic
- Laboratory for Neurophysiology, Institute for Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Marija Vlaski-Lafarge
- Inserm U1211 Maladies Rares: Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Sofia-Iris Bibli
- Department of Vascular Dysfunction, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Vesna Otasevic
- Institute for Biological Research "Sinisa Stankovic", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos R Filipovic
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany; School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
2
|
Mayorga-Martino V, Mansurova M, Calla-Quispe E, Ibáñez AJ. Unlocking the Secrets of Insects: The Role of Mass Spectrometry to Understand the Life of Insects. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39679754 DOI: 10.1002/mas.21922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Chemical signaling is crucial during the insect lifespan, significantly affecting their survival, reproduction, and ecological interactions. Unfortunately, most chemical signals insects use are impossible for humans to perceive directly. Hence, mass spectrometry has become a vital tool by offering vital insight into the underlying chemical and biochemical processes in various variety of insect activities, such as communication, mate recognition, mating behavior, and adaptation (defense/attack mechanisms), among others. Here, we review different mass spectrometry-based strategies used to gain a deeper understanding of the chemicals involved in shaping the complex behaviors among insects and mass spectrometry-based research in insects that have direct impact in global economic activities.
Collapse
Affiliation(s)
- Vanessa Mayorga-Martino
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Madina Mansurova
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Erika Calla-Quispe
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
| | - Alfredo J Ibáñez
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| |
Collapse
|
3
|
Zhu X, Xu T, Peng C, Wu S. Advances in MALDI Mass Spectrometry Imaging Single Cell and Tissues. Front Chem 2022; 9:782432. [PMID: 35186891 PMCID: PMC8850921 DOI: 10.3389/fchem.2021.782432] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Compared with conventional optical microscopy techniques, mass spectrometry imaging (MSI) or imaging mass spectrometry (IMS) is a powerful, label-free analytical technique, which can sensitively and simultaneously detect, quantify, and map hundreds of biomolecules, such as peptides, proteins, lipid, and other organic compounds in cells and tissues. So far, although several soft ionization techniques, such as desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS) have been used for imaging biomolecules, matrix-assisted laser desorption/ionization (MALDI) is still the most widespread MSI scanning method. Here, we aim to provide a comprehensive review of MALDI-MSI with an emphasis on its advances of the instrumentation, methods, application, and future directions in single cell and biological tissues.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Xu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chen Peng
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Wu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Shihua Wu, ; Shihua Wu,
| |
Collapse
|
4
|
Unravel the Local Complexity of Biological Environments by MALDI Mass Spectrometry Imaging. Int J Mol Sci 2021; 22:ijms222212393. [PMID: 34830273 PMCID: PMC8623934 DOI: 10.3390/ijms222212393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Classic metabolomic methods have proven to be very useful to study functional biology and variation in the chemical composition of different tissues. However, they do not provide any information in terms of spatial localization within fine structures. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) does and reaches at best a spatial resolution of 0.25 μm depending on the laser setup, making it a very powerful tool to analyze the local complexity of biological samples at the cellular level. Here, we intend to give an overview of the diversity of the molecules and localizations analyzed using this method as well as to update on the latest adaptations made to circumvent the complexity of samples. MALDI MSI has been widely used in medical sciences and is now developing in research areas as diverse as entomology, microbiology, plant biology, and plant–microbe interactions, the rhizobia symbiosis being the most exhaustively described so far. Those are the fields of interest on which we will focus to demonstrate MALDI MSI strengths in characterizing the spatial distributions of metabolites, lipids, and peptides in relation to biological questions.
Collapse
|
5
|
Mamun A, Islam A, Eto F, Sato T, Kahyo T, Setou M. Mass spectrometry-based phospholipid imaging: methods and findings. Expert Rev Proteomics 2021; 17:843-854. [PMID: 33504247 DOI: 10.1080/14789450.2020.1880897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Imaging is a technique used for direct visualization of the internal structure or distribution of biomolecules of a living system in a two-dimensional or three-dimensional fashion. Phospholipids are important structural components of biological membranes and have been reported to be associated with various human diseases. Therefore, the visualization of phospholipids is crucial to understand the underlying mechanism of cellular and molecular processes in normal and diseased conditions. Areas covered: Mass spectrometry imaging (MSI) has enabled the label-free imaging of individual phospholipids in biological tissues and cells. The commonly used MSI techniques include matrix-assisted laser desorption ionization-MSI (MALDI-MSI), desorption electrospray ionization-MSI (DESI-MSI), and secondary ion mass spectrometry (SIMS) imaging. This special report described those methods, summarized the findings, and discussed the future development for the imaging of phospholipids. Expert opinion: Phospholipids imaging in complex biological samples has been significantly benefited from the development of MSI methods. In MALDI-MSI, novel matrix that produces homogenous crystals exclusively with polar lipids is important for phospholipids imaging with greater efficiency and higher spatial resolution. DESI-MSI has the potential of live imaging of the biological surface while SIMS is expected to image at the subcellular level in the near future.
Collapse
Affiliation(s)
- Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Fumihiro Eto
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine , Hamamatsu, Shizuoka, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center , Hamamatsu, Shizuoka, Japan
| |
Collapse
|
6
|
Unsupervised machine learning using an imaging mass spectrometry dataset automatically reassembles grey and white matter. Sci Rep 2019; 9:13213. [PMID: 31519997 PMCID: PMC6744563 DOI: 10.1038/s41598-019-49819-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Current histological and anatomical analysis techniques, including fluorescence in situ hybridisation, immunohistochemistry, immunofluorescence, immunoelectron microscopy and fluorescent fusion protein, have revealed great distribution diversity of mRNA and proteins in the brain. However, the distributional pattern of small biomolecules, such as lipids, remains unclear. To this end, we have developed and optimised imaging mass spectrometry (IMS), a combined technique incorporating mass spectrometry and microscopy, which is capable of comprehensively visualising biomolecule distribution. We demonstrated the differential distribution of phospholipids throughout the cell body and axon of neuronal cells using IMS analysis. In this study, we used solarix XR, a high mass resolution and highly sensitive MALDI-FT-ICR-MS capable of detecting higher number of molecules than conventional MALDI-TOF-MS instruments, to create a molecular distribution dataset. We examined the diversity of biomolecule distribution in rat brains using IMS and hypothesised that unsupervised machine learning reconstructs brain structures such as the grey and white matters. We have demonstrated that principal component analysis (PCA) can reassemble the grey and white matters without assigning brain anatomical regions. Hierarchical clustering allowed us to classify the 10 groups of observed molecules according to their distributions. Furthermore, the group of molecules specifically localised in the cerebellar cortex was estimated to be composed of phospholipids.
Collapse
|
7
|
Kadesch P, Quack T, Gerbig S, Grevelding CG, Spengler B. Lipid Topography in Schistosoma mansoni Cryosections, Revealed by Microembedding and High-Resolution Atmospheric-Pressure Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry Imaging. Anal Chem 2019; 91:4520-4528. [DOI: 10.1021/acs.analchem.8b05440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Patrik Kadesch
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Thomas Quack
- Institute of Parasitology, Justus Liebig University Giessen, BFS, Schubertstrasse 81, 35392 Giessen, Germany
| | - Stefanie Gerbig
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Christoph G. Grevelding
- Institute of Parasitology, Justus Liebig University Giessen, BFS, Schubertstrasse 81, 35392 Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
8
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
9
|
Schey KL, Hachey AJ, Rose KL, Grey AC. MALDI imaging mass spectrometry of Pacific White Shrimp L. vannamei and identification of abdominal muscle proteins. Proteomics 2016; 16:1767-74. [PMID: 26990122 DOI: 10.1002/pmic.201500531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023]
Abstract
MALDI imaging mass spectrometry (IMS) has been applied to whole animal tissue sections of Pacific White Shrimp, Litopenaeus vannamei, in an effort to identify and spatially localize proteins in specific organ systems. Frozen shrimp were sectioned along the ventral-dorsal axis and methods were optimized for matrix application. In addition, tissue microextraction and homogenization was conducted followed by top-down LC-MS/MS analysis of intact proteins and searches of shrimp EST databases to identify imaged proteins. IMS images revealed organ system specific protein signals that highlighted the hepatopancreas, heart, nervous system, musculature, and cuticle. Top-down proteomics identification of abdominal muscle proteins revealed the sequence of the most abundant muscle protein that has no sequence homology to known proteins. Additional identifications of abdominal muscle proteins included titin, troponin-I, ubiquitin, as well as intact and multiple truncated forms of flightin; a protein known to function in high frequency contraction of insect wing muscles. The combined use of imaging mass spectrometry and top-down proteomics allowed for identification of novel proteins from the sparsely populated shrimp protein databases.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.,Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Amanda J Hachey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.,Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angus C Grey
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Ying L, Zhu H. Current advances in the functional studies of fatty acids and fatty acid-derived lipids in C. elegans. WORM 2016; 5:e1184814. [PMID: 27695652 DOI: 10.1080/21624054.2016.1184814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 02/08/2023]
Abstract
Fatty acids and fatty acid-derived lipids (FAs/FADLs) play essential roles in many living organisms, including contributions to membrane structure and signaling transduction. Aberrant metabolism of FAs/FADLs often causes diseases and health problems. However, the detailed mechanistic studies of specific FAs/FADLs in vivo are limited. C. elegans has been an effective model system for FA/ FADL studies due to its powerful genetics and conserved lipid biosynthetic pathways. The recently developed high-throughput analytic tools also enable sophisticated profiling of lipids molecules in C. elegans, which is critical for understanding their specific functions. Here we review a subset of current advances in FA/FADL functional studies in C. elegans.
Collapse
Affiliation(s)
- Lu Ying
- School of Life Science and Technology, ShanghaiTech University , Shanghai, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University , Shanghai, China
| |
Collapse
|