1
|
Vale M, Orišková S, Mariquito A, Reis L, Pinto M, Marques AC. Multicomponent oxide microspheres with designed macroporosity (MICROSCAFS®): a customized platform for chemicals immobilization. RSC Adv 2023; 13:12951-12965. [PMID: 37114025 PMCID: PMC10128106 DOI: 10.1039/d3ra00895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
A novel versatile, easily recoverable, and recyclable material platform is herein presented, consisting of multicomponent oxide microspheres, of silica-titania and silica-titania-hafnia composition, with tailored interconnected macroporosity (MICROSCAFS®). When functionalized or loaded with desired species, they are potential enablers of emerging applications in environmental remediation, among other fields. We combine emulsion templating for the spherical shape of the particles, with an adapted sol-gel technique involving polymerization-induced phase separation by spinodal decomposition. An advantage of our method regards the employed mix of precursors, which prevents the use of specific gelation additives and porogens and allows a high reproducibility of MICROSCAFS®. We present insight into their formation mechanism using cryo-scanning electron microscopy, and a systematic study of the effect of multiple synthesis parameters on the MICROSCAFS® size and porosity. The composition of the silicon precursors has the most significant effect on fine-tuning the pores size, ranging from the nanometer to the micron scale. Mechanical properties are correlated with morphological features. Larger macroporosity (68% open porosity, estimated by X-ray computed tomography) leads to less stiffness, higher elastic recovery, and compressibility values up to 42%. We believe this study creates a base for consistent custom MICROSCAFS® production, with a design for various future applications.
Collapse
Affiliation(s)
- Mário Vale
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Sofia Orišková
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - António Mariquito
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Luís Reis
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Moisés Pinto
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Ana C Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| |
Collapse
|
2
|
Carrasco-Correa EJ, Ruiz-Allica J, Rodríguez-Fernández JF, Miró M. Human artificial membranes in (bio)analytical science: Potential for in vitro prediction of intestinal absorption-A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
BAI Y, FAN Y, GE G, WANG F. [Advances in chromatography in the study of drug-plasma protein interactions]. Se Pu 2021; 39:1077-1085. [PMID: 34505429 PMCID: PMC9404221 DOI: 10.3724/sp.j.1123.2021.06028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
After entering human blood circulation, small-molecule drugs interact extensively with various plasma proteins, such as human serum albumin and α1-acid glycoprotein. These interactions profoundly affect the distribution of drugs in vivo and the binding of drugs to targets, thus affecting the efficacy of drugs. In-depth investigation of drug-plasma protein interactions is of great significance for the optimization of drug properties, the development of new drugs, risk assessment, and combination therapy of drugs. Therefore, it is essential to develop highly efficient, sensitive, and accurate methods for elucidating drug-plasma protein interactions. Chromatography is a powerful tool with high throughput, high separation performance, and high sensitivity in the characterization of drug-protein interactions. High-performance affinity chromatography (HPAC) and capillary electrophoresis (CE) have been widely utilized in this field. These methods include the determination of the effects of the posttranslational modification of proteins on binding and the competitive binding of multiple drugs. In addition, various chromatographic methods are used to obtain interaction information such as the binding constant, binding-site number, and dissociation rate constant. In this review, the common strategies and recent advances in HPAC and CE in the study of drug-plasma protein interactions are briefly reviewed. The immobilization methods of proteins, the principles and applications of frontal analysis, zonal elution, ultrafast affinity extraction, peak profiling, and peak decay analysis are discussed for HPAC and affinity capillary electrophoresis (ACE) and capillary electrophoresis frontal analysis (CE-FA) for CE. HPAC relies on the fixation of proteins on the surfaces of chromatographic stationary phases by covalent linking or physical adsorption, followed by obtaining the drug-protein interaction information through a variety of chromatographic methods. In the frontal chromatography analysis, mobile phases with different concentrations of drugs are passed through the HPAC column to obtain different breakthrough times. The process can determine the number of drug binding sites and the binding constant of each site in the affinity protein with high accuracy. The zonal elution method can detect the drug binding sites on proteins using site-specific probes to determine whether there is competition between drugs and probes. The sample consumption and analysis time of the zonal elution method are much less than those in frontal chromatography analysis. The ultrafast affinity extraction method can inject complex samples, such as serum, into affinity columns to determine the free drug components. It can measure the combination and dissociation constants of drug-protein interactions by changing the chromatography flow rate. Peak profiling and peak decay analyses are both effective methods for investigating the dissociation of drugs and proteins. In CE analysis, the drug and protein samples are dissolved in an electrophoresis buffer, and their interactions are measured during electrophoresis with high accuracy and low sample consumption. However, the adsorption of proteins on the capillary wall can compromise CE performance. Common CE methods in drug-protein interaction analysis are ACE and CE-FA. ACE is usually performed by changing the effective mobility of drugs via the addition of different concentrations of proteins. This method has been widely used, and several variant techniques have been developed recently. CE-FA involves the sampling of a drug premixed at a known concentration with a target protein. Compared with other CE methods, CE-FA exhibits the unique advantages of high throughput, automatic online analysis, and the ability to determine high-order drug-protein interactions. Finally, the shortcomings of current chromatography methods are summarized, and the application prospects and development direction of chromatography technology in the field of drug-plasma protein interaction research are discussed.
Collapse
|
4
|
Microwave-assisted solid-phase synthesis of nitrogen-doping carbon dot with good solvent compatibility and its sensing of sunitinib. Anal Bioanal Chem 2021; 413:6435-6447. [PMID: 34401928 DOI: 10.1007/s00216-021-03609-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
Microwave-assisted solid-phase synthesis method was simple, convenient, and fast, and herein adopted to produce nitrogen-doping carbon dots (N-CDs) in only 3 min. The N-CDs possessed high fluorescence quantum yield up to 15.9% with satisfactory stability to the environmental pH, ionic strength, and ultraviolet radiation. Particularly, the N-CDs had excellent dispersibility in both water and water-compatible organic solvents with similar fluorescence properties. Sunitinib, a small-molecule tyrosine inhibitor effective for some solid tumors, was found to quench the fluorescence of N-CDs in these media via the inner-filter effect. Hence, it was convenient to combine the proper sample pretreatment with the N-CD probe for sensing sunitinib avoiding the medium incompatibility problem. For rat plasma sample, salting-out liquid-liquid extraction was employed to minimize the sample matrix and concentrate the target sunitinib from aqueous to acetonitrile. The fluorescence detection of sunitinib was then achieved in acetonitrile by the addition of the proper amount of N-CDs. The method provided a good linearity of 0.1 μg/mL to 7 μg/mL with a limit of detection of 30 ng/mL, which met the requirement of the therapeutic drug monitoring of sunitinib. The developed method was potential for on-site detection of sunitinib.
Collapse
|
5
|
Marques AC, Vale M. Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4247. [PMID: 34361442 PMCID: PMC8348184 DOI: 10.3390/ma14154247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022]
Abstract
Macroporous and hierarchically macro/mesoporous materials (mostly monoliths and microspheres) have attracted much attention for a variety of applications, such as supporting or enabling materials in chromatography, energy storage and conversion, catalysis, biomedical devices, drug delivery systems, and environmental remediation. A well-succeeded method to obtain these tailored porous materials relies on the sol-gel technique, combined with phase separation by spinodal decomposition, and involves as well emulsification as a soft template, in the case of the synthesis of porous microspheres. Significant advancements have been witnessed, in terms of synthesis methodologies optimized either for the use of alkoxides or metal-salts and material design, including the grafting or immobilization of a specific species (or nanoparticles) to enable the most recent trends in technological applications, such as photocatalysis. In this context, the evolution, in terms of material composition and synthesis strategies, is discussed in a concerted fashion in this review, with the goal of inspiring new improvements and breakthroughs in the framework of porous materials.
Collapse
Affiliation(s)
- Ana C. Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal;
| | | |
Collapse
|
6
|
Humeres E, Canle M, Lopes CN, Santaballa JA, Debacher NA, Moreira RDFPM, Safin V, Pérez MIF. Photo-immobilization of proteins on carbons. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 202:111675. [PMID: 31733612 DOI: 10.1016/j.jphotobiol.2019.111675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
The photofunctionalization of three different carbons with two proteins was studied at room temperature. Water solutions of bovine serum albumin, BSA, and α-amylase, AA, were photolyzed at 21 °C in the presence of graphite microparticles (6.20 μm), MPG, graphene oxide, MPGO, and graphene oxide modified with SO2, mMPGO. The insertion of BSA on carbon matrixes occurred with a deoxygenation reaction, most likely due to a dehydration step of a water molecule. XPS, TOC and TGA, showed that the BSA photo-insertion on MPG was highly efficient with 34.9% of the weight of MPG after photolysis, with an initial concentration of 1 g∙L-1 of BSA. A high yield of AA photoinsertion on the carbons was also obtained. The calculated weight of AA inserted on MPG and MPGO after photolysis was 22.30% and 18.08%, respectively, with respect to the initial weight of carbon, when the initial concentration of AA was 60 mg∙L-1. AA immobilized on MPG was active while the enzyme on MPGO showed a smaller activity, within the experimental error. Although a certain extent of denaturalization of both proteins was observed during photolysis, the molecular weight and composition changed very little during the photolysis, which would produce mainly conformational changes and isomerization reactions.
Collapse
Affiliation(s)
- Eduardo Humeres
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Moisés Canle
- Universidade da Coruña, Grupo Reactividade Química e Fotorreactividade (React!), Departamento de Química, Facultade de Ciencias & CICA, E-15071 A Coruña, Spain
| | - Cristiane Nunes Lopes
- Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - J Arturo Santaballa
- Universidade da Coruña, Grupo Reactividade Química e Fotorreactividade (React!), Departamento de Química, Facultade de Ciencias & CICA, E-15071 A Coruña, Spain
| | - Nito Angelo Debacher
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Regina de F P M Moreira
- Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Vladimir Safin
- Universidade da Coruña, Grupo Reactividade Química e Fotorreactividade (React!), Departamento de Química, Facultade de Ciencias & CICA, E-15071 A Coruña, Spain; Department of Chemistry and Technology of Natural Energy Carriers and Carbon Materials, Siberian Federal University, Russia
| | - M Isabel Fernández Pérez
- Universidade da Coruña, Grupo Reactividade Química e Fotorreactividade (React!), Departamento de Química, Facultade de Ciencias & CICA, E-15071 A Coruña, Spain
| |
Collapse
|
7
|
de Moraes MC, Cardoso CL, Cass QB. Solid-Supported Proteins in the Liquid Chromatography Domain to Probe Ligand-Target Interactions. Front Chem 2019; 7:752. [PMID: 31803714 PMCID: PMC6873629 DOI: 10.3389/fchem.2019.00752] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Ligand-target interactions play a central role in drug discovery processes because these interactions are crucial in biological systems. Small molecules-proteins interactions can regulate and modulate protein function and activity through conformational changes. Therefore, bioanalytical tools to screen new ligands have focused mainly on probing ligand-target interactions. These interactions have been evaluated by using solid-supported proteins, which provide advantages like increased protein stability and easier protein extraction from the reaction medium, which enables protein reuse. In some specific approaches, precisely in the ligand fishing assay, the bioanalytical method allows the ligands to be directly isolated from complex mixtures, including combinatorial libraries and natural products extracts without prior purification or fractionation steps. Most of these screening assays are based on liquid chromatography separation, and the binding events can be monitored through on-line or off-line methods. In the on-line approaches, solid supports containing the immobilized biological target are used as chromatographic columns most of the time. Several terms have been used to refer to such approaches, such as weak affinity chromatography, high-performance affinity chromatography, on-flow activity assays, and high-performance liquid affinity chromatography. On the other hand, in the off-line approaches, the binding event occurs outside the liquid chromatography system and may encompass affinity and activity-based assays in which the biological target is immobilized on magnetic particles or monolithic silica, among others. After the incubation step, the supernatant or the eluate from the binding assay is analyzed by liquid chromatography coupled to various detectors. Regardless of the selected bioanalytical approach, the use of solid supported proteins has significantly contributed to the development of automated and reliable screening methods that enable ligands to be isolated and characterized in complex matrixes without purification, thereby reducing costs and avoiding time-laborious steps. This review provides a critical overview of recently developed assays.
Collapse
Affiliation(s)
- Marcela Cristina de Moraes
- Laboratório SINCROMA, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói, Brazil
| | - Carmen Lucia Cardoso
- Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Quezia Bezerra Cass
- Separare, Departamento de Química, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
8
|
Li J, Xu L, Shi ZG. Waxberry-like hierarchically porous ethyl-bridged hybrid silica microsphere: A substrate for enzyme catalysis and high-performance liquid chromatography. J Chromatogr A 2018; 1587:79-87. [PMID: 30527847 DOI: 10.1016/j.chroma.2018.11.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
In this study, the ethyl-bridged hybrid silica microsphere with hierarchically meso-macroporous structure was initially synthesized through a method combining dispersion polymerization with sol-gel transition and phase separation. The flow-through macropores rendered the microsphere a rough surface like a waxberry, and thus the material was named as waxberry-like ethyl-bridged hybrid silica sphere (WEHS). WEHS was characteristic of appropriate alkali-stability, which was highly difficult for the pure silica. Additionally, WEHS possessed hierarchical meso- and macropores, which added additional value for faster mass transfer than the conventional fully porous silica materials. Taking the advantages of WEHS, it was successfully applied as the substrate to immobilize lipase; the prepared immobilized lipase exhibited high catalytic activity and favorable reusability under alkaline conditions, which was significant in pitch control of neutral-alkaline papermaking industry. Moreover, as the high-performance liquid chromatographic stationary phase matrix, WEHS made the separation under alkaline mobile phase into a reality for the silica-based materials. Besides, an ultra-fast and efficient separation in minutes was achieved with lower consumption of solvents and saving analytical time, which is highly desired in modern analysis. In general, WEHS was a novel and promising candidate in the myriads of silica-based materials.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Wuhan University, Wuhan, 430072, China; Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Guo Shi
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
9
|
Mao XJ, Li J, Liu D, Qiao T, Ma L, Sun X, Xu L, Shi ZG. Flow-through silica: A potential matrix for fast chromatographic enantioseparation with high enantioselectivity. Talanta 2018; 178:583-587. [DOI: 10.1016/j.talanta.2017.09.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/18/2017] [Accepted: 09/30/2017] [Indexed: 11/15/2022]
|
10
|
Qiao T, Ma LY, Wang X, Shi ZG. The flow-through silica as the matrix to immobilize gold nanoparticles for HPLC applications. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2017.1421552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ting Qiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Li-yun Ma
- Department of Pharmacy, Union Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Zhi-Guo Shi
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Wei F, Wang S, Lv N, Bu Y, Xie X. Characterization the affinity of α 1A adrenoreceptor by cell membrane chromatography with frontal analysis and stoichiometric displacement model. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1040:273-281. [DOI: 10.1016/j.jchromb.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
12
|
Zeng K, Wang J, Sun Z, Li Q, Liao S, Zhao X, Zheng X. Rapid analysis of interaction between six drugs and β 2 -adrenergic receptor by injection amount-dependent method. Biomed Chromatogr 2016; 31. [PMID: 27859454 DOI: 10.1002/bmc.3897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022]
Abstract
Drug-protein interaction analysis has become a considerable topic in life science which includes clarifying protein functions, explaining drug action mechanisms and uncovering novel drug candidates. This work was to determine the association constants (KA ) of six drugs to β2 -adrenergic receptor by injection amount-dependent method using stationary phase containing the immobilized receptor. The values of KA were calculated to be (25.85 ± 0.035) × 104 m-1 for clorprenaline, (42.51 ± 0.054) × 104 m-1 for clenbuterol, (6.67 ± 0.008) × 104 m-1 for terbutaline, (33.99 ± 0.025) × 104 m-1 for tulobuterol, (7.59 ± 0.011) × 104 m-1 for salbutamol and (78.52 ± 0.087) × 104 m-1 for bambuterol. This rank order agreed well with the data determined by zonal elution, frontal analysis and nonlinear chromatography, even using different batches of β2 -AR column. A good correlation was found between the association constants by the current method and radio-ligand binding assay. Our data indicates that the injection amount-dependent method is a powerful alternative for rapid analysis of ligand-receptor interactions.
Collapse
Affiliation(s)
- Kaizhu Zeng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhenyu Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Sha Liao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
13
|
Abstract
The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations.
Collapse
Affiliation(s)
- Cong Bi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Shiden Azaria
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Sandya Beeram
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Zhao Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S. Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| |
Collapse
|