1
|
Maruška A, Mickienė R, Kaškonienė V, Grigiškis S, Stankevičius M, Drevinskas T, Kornyšova O, Donati E, Tiso N, Mikašauskaitė-Tiso J, Zacchini M, Levišauskas D, Ragažinskienė O, Bimbiraitė-Survilienė K, Kanopka A, Dūda G. Searching for Chemical Agents Suppressing Substrate Microbiota in White-Rot Fungi Large-Scale Cultivation. Microorganisms 2024; 12:1242. [PMID: 38930624 PMCID: PMC11206069 DOI: 10.3390/microorganisms12061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Edible fungi are a valuable resource in the search for sustainable solutions to environmental pollution. Their ability to degrade organic pollutants, extract heavy metals, and restore ecological balance has a huge potential for bioremediation. They are also sustainable food resources. Edible fungi (basidiomycetes or fungi from other divisions) represent an underutilized resource in the field of bioremediation. By maximizing their unique capabilities, it is possible to develop innovative approaches for addressing environmental contamination. The aim of the present study was to find selective chemical agents suppressing the growth of microfungi and bacteria, but not suppressing white-rot fungi, in order to perform large-scale cultivation of white-rot fungi in natural unsterile substrates and use it for different purposes. One application could be the preparation of a matrix composed of wooden sleeper (contaminated with PAHs) and soil for further hazardous waste bioremediation using white-rot fungi. In vitro microbiological methods were applied, such as, firstly, compatibility tests between bacteria and white-rot fungi or microfungi, allowing us to evaluate the interaction between different organisms, and secondly, the addition of chemicals on the surface of a Petri dish with a test strain of microorganisms of white-rot fungi, allowing us to determine the impact of chemicals on the growth of organisms. This study shows that white-rot fungi are not compatible to grow with several rhizobacteria or bacteria isolated from soil and bioremediated waste. Therefore, the impact of several inorganic materials, such as lime (hydrated form), charcoal, dolomite powder, ash, gypsum, phosphogypsum, hydrogen peroxide, potassium permanganate, and sodium hydroxide, was evaluated on the growth of microfungi (sixteen strains), white-rot fungi (three strains), and bacteria (nine strains) in vitro. Charcoal, dolomite powder, gypsum, and phosphogypsum did not suppress the growth either of microfungi or of bacteria in the tested substrate, and even acted as promoters of their growth. The effects of the other agents tested were strain dependent. Potassium permanganate could be used for bacteria and Candida spp. growth suppression, but not for other microfungi. Lime showed promising results by suppressing the growth of microfungi and bacteria, but it also suppressed the growth of white-rot fungi. Hydrogen peroxide showed strong suppression of microfungi, and even had a bactericidal effect on some bacteria, but did not have an impact on white-rot fungi. The study highlights the practical utility of using hydrogen peroxide up to 3% as an effective biota-suppressing chemical agent prior to inoculating white-rot fungi in the large-scale bioremediation of polluted substrates, or in the large-scale cultivation for mushroom production as a foodstuff.
Collapse
Affiliation(s)
- Audrius Maruška
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Rūta Mickienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Vilma Kaškonienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | | | - Mantas Stankevičius
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Tomas Drevinskas
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Olga Kornyšova
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Enrica Donati
- National Research Council, Area Della Ricerca di Roma 1, Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy; (E.D.); (M.Z.)
| | - Nicola Tiso
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Jurgita Mikašauskaitė-Tiso
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Massimo Zacchini
- National Research Council, Area Della Ricerca di Roma 1, Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy; (E.D.); (M.Z.)
| | - Donatas Levišauskas
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
- Process Control Department, Kaunas University of Technology, Studentų St. 50, LT-51368 Kaunas, Lithuania
| | - Ona Ragažinskienė
- Botanical Garden of Vytautas Magnus University, Ž. E. Žilibero 6, LT-46324 Kaunas, Lithuania;
| | - Kristina Bimbiraitė-Survilienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Arvydas Kanopka
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| | - Gediminas Dūda
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos St. 8, LT-40444 Kaunas, Lithuania; (R.M.); (V.K.); (M.S.); (T.D.); (O.K.); (N.T.); (J.M.-T.); (D.L.); (K.B.-S.); (A.K.); (G.D.)
| |
Collapse
|
2
|
Bakri M. Assessing some
Cladosporium
species in the biodegradation of petroleum hydrocarbon for treating oil contamination. J Appl Microbiol 2022; 133:3296-3306. [DOI: 10.1111/jam.15815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Marwah Bakri
- Department of Biology Jazan University Jizan Saudi Arabia
| |
Collapse
|
3
|
Malik G, Arora R, Chaturvedi R, Paul MS. Implementation of Genetic Engineering and Novel Omics Approaches to Enhance Bioremediation: A Focused Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:443-450. [PMID: 33837794 DOI: 10.1007/s00128-021-03218-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Bioremediation itself is considered to be a cost effective soil clean-up technique and preferred over invasive physical and chemical treatments. Besides increasing efficiency, application of genetic engineering has led to reduction in the time duration required to achieve remediation, overcoming the so called 'Achilles heel' of Bioremediation. Omics technologies, namely genomics, transcriptomics, proteomics, and metabolomics, are being employed extensively to gain insights at genetic level. A wise synchronised application of these approaches can help scrutinize complex metabolic pathways, and molecular changes in response to heavy metal stress, and also its fate i.e., uptake, transport, sequestration and detoxification. In the present review, an account of some latest achievements made in the field is presented.
Collapse
Affiliation(s)
| | - Rahul Arora
- The Francis Crick Institute, London, United Kingdom
- Division of Biosciences, University College London, London, United Kingdom
| | | | - Manoj S Paul
- Department of Botany, St. John's College, Agra, U.P, India
| |
Collapse
|
4
|
Brazkova M, Koleva R, Angelova G, Yemendzhiev H. Ligninolytic enzymes in Basidiomycetes and their application in xenobiotics degradation. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224502009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Variety of microorganisms have already proven their capabilities for degradation of wide range of wastes with anthropogenic nature. These pollutants, both liquid and solids, also include so called xenobiotics like phenol and its derivatives, PAHs, dyes, pesticides, pharmaceuticals, etc. Xenobiotics as bisphenol A (BPA), chlorhexidine (CHX), octenidine (OCT), other disinfectants and antiseptics have high ecotoxicological impact. Moreover, they can also impair our quality of life and our health interfering different metabolic and hormone receptors pathways in human body. Chemical treatment of such wastes is not a viable option because of its poor socio-economics and environmental merits. Therefore, applying effective, ecofriendly and cheap treatment methods is of great importance. Basidiomycetes are extensively investigated for their abilities to degrade numerous pollutants and xenobiotics. Through their extracellular ligninolytic enzymes they are capable of reducing or completely removing wide range of hazardous compounds. These enzymes can be categorized in two groups: oxidases (laccase) and peroxidases (manganese peroxidase, lignin peroxidase, versatile peroxidase). Due to the broad substrate specificity of the secreted enzymes Basidiomycetes can be applied as a powerful tool for bioremediation of diverse xenobiotics and recalcitrant compounds.
Collapse
|
5
|
Bilen Ozyurek S, Avcioglu NH, Seyis Bilkay I. Mycoremediation potential of Aspergillus ochraceus NRRL 3174. Arch Microbiol 2021; 203:5937-5950. [PMID: 34599404 DOI: 10.1007/s00203-021-02490-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022]
Abstract
Mycoremediation is an important process that targets the removal of petroleum hydrocarbons by fungi. Fungi have advantages with their extensive enzymatic systems, rapid adaptation to toxic organic pollutants, and to adverse environmental conditions. In this study, the colorimetric method was used for the preliminary investigation of petroleum degradation with ten fungal strains. Petroleum degradation ability of spore suspension, live biomass (fungal pellet and disc) and cell-free culture supernatant of the potent A. ochraceus strain were investigated by gravimetric analysis. It was found that the fungal disc (94%) was more successful than the spore suspension (87%) in petroleum degradation under physiological conditions determined as pH:5.0, 1% of petroleum concentration, 5% (v/v) of inoculum concentration (with spore suspension) and 1 g/100 mL of inoculum amount (with fungal disc) and 7 days of the incubation period. The degradation rate constant and half-life period of spore suspension were calculated as 0.291 day-1 and t1/2 = 0.340 and of the fungal disc were 0.401 day-1 and t1/2 = 0.247. Although, 7.5% and 10% (v/v) concentration of cell-free culture supernatant achieved more than 80% petroleum removal, it was not as effective as a fungal disc. According to gas chromatography/mass spectrometry analysis, the fungal disc of A. ochraceus strain degraded long-chain n-alkanes such as C35 and C36 more effectively than n-alkanes in the range of C22-C34. The fact that the A. ochraceus NRRL 3174 strain has a high petroleum degradation capacity as well as being a potent biosurfactant producer will provide a different perspective to advanced mycoremediation studies.
Collapse
Affiliation(s)
- Sezen Bilen Ozyurek
- Department of Biology (Biotechnology), Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey.
| | - Nermin Hande Avcioglu
- Department of Biology (Biotechnology), Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Isil Seyis Bilkay
- Department of Biology (Biotechnology), Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| |
Collapse
|
6
|
Drevinskas T, Maruška A, Bimbiraitė-Survilienė K, Du̅da G, Stankevičius M, Tiso N, Mickienė R, Pedišius V, Levišauskas D, Kaškonienė V, Ragažinskienė O, Grigiškis S, Donati E, Zacchini M. Mathematical Model Coupled to Neural Networks Calculates the Extraction Recovery of Polycyclic Aromatic Hydrocarbons in Problematic Matrix. ACS OMEGA 2021; 6:14612-14620. [PMID: 34124484 PMCID: PMC8190882 DOI: 10.1021/acsomega.1c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Unknown extraction recovery from solid matrix samples leads to meaningless chemical analysis results. It cannot always be determined, and it depends on the complexity of the matrix and properties of the extracted substances. This paper combines a mathematical model with the machine learning method-neural networks that predict liquid extraction recovery from solid matrices. The prediction of the three-stage extraction recovery of polycyclic aromatic hydrocarbons from a wooden railway sleeper matrix is demonstrated. Calculation of the extraction recovery requires the extract's volume to be measured and the polycyclic aromatic hydrocarbons' concentration to be determined for each stage. These data are used to calculate the input values for a neural network model. Lowest mean-squared error (0.014) and smallest retraining relative standard deviation (20.7%) were achieved with the neural network setup 6:5:5:4:1 (six inputs, three hidden layers with five, five, and four neurons in a layer, and one output). To train such a neural network, it took less than 8000 steps-less than a second--using an average-performance laptop. The relative standard deviation of the extraction recovery predictions ranged between 1.13 and 5.15%. The three-stage recovery of the extracted dry sample showed 104% of three different polycyclic aromatic hydrocarbons. The extracted wet sample recovery was 71, 98, and 55% for phenanthrene, anthracene, and pyrene, respectively. This method is applicable in the environmental, food processing, pharmaceutical, biochemical, biotechnology, and space research areas where extraction should be performed autonomously without human interference.
Collapse
Affiliation(s)
- Tomas Drevinskas
- Instrumental
Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
| | - Audrius Maruška
- Instrumental
Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
| | - Kristina Bimbiraitė-Survilienė
- Instrumental
Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
| | - Gediminas Du̅da
- Instrumental
Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
| | - Mantas Stankevičius
- Instrumental
Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
| | - Nicola Tiso
- Instrumental
Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
| | - Ru̅ta Mickienė
- Instrumental
Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
| | - Vilmantas Pedišius
- Instrumental
Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
| | - Donatas Levišauskas
- Instrumental
Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
- Process
Control Department, Kaunas University of
Technology, Studentų
St. 50, LT-51368 Kaunas, Lithuania
| | - Vilma Kaškonienė
- Instrumental
Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
| | - Ona Ragažinskienė
- Kaunas
Botanical Garden of Vytautas Magnus University, Ž. E. Žilibero 6, LT-46324 Kaunas, Lithuania
| | | | - Enrica Donati
- National
Research Council, Area
della Ricerca di Roma, via Salaria Km 29, 300-00015, Monterotondo (Rome), Italy
| | - Massimo Zacchini
- National
Research Council, Area
della Ricerca di Roma, via Salaria Km 29, 300-00015, Monterotondo (Rome), Italy
| |
Collapse
|
7
|
Portable automated handheld sample collection-preparation instrument for airborne volatile substances. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Li Q, Liu J, Gadd GM. Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Appl Microbiol Biotechnol 2020; 104:8999-9008. [PMID: 32940735 PMCID: PMC7567682 DOI: 10.1007/s00253-020-10854-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 11/27/2022]
Abstract
Abstract Much research has been carried out on the bacterial bioremediation of soil contaminated with petroleum hydrocarbons and toxic metals but much less is known about the potential of fungi in sites that are co-contaminated with both classes of pollutants. This article documents the roles of fungi in soil polluted with both petroleum hydrocarbons and toxic metals as well as the mechanisms involved in the biotransformation of such substances. Soil characteristics (e.g., structural components, pH, and temperature) and intracellular or excreted extracellular enzymes and metabolites are crucial factors which affect the efficiency of combined pollutant transformations. At present, bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals is mostly focused on the removal, detoxification, or degradation efficiency of single or composite pollutants of each type. Little research has been carried out on the metabolism of fungi in response to complex pollutant stress. To overcome current bottlenecks in understanding fungal bioremediation, the potential of new approaches, e.g., gradient diffusion film technology (DGT) and metabolomics, is also discussed. Key points • Fungi play important roles in soil co-contaminated with TPH and toxic metals. • Soil characteristics, enzymes, and metabolites are major factors in bioremediation. • DGT and metabolomics can be applied to overcome current bottlenecks.
Collapse
Affiliation(s)
- Qianwei Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Jicheng Liu
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Geoffrey Michael Gadd
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK.
| |
Collapse
|
9
|
Drevinskas T, Telksnys L, Maruška A, Gorbatsova J, Kaljurand M. Capillary Electrophoresis Sensitivity Enhancement Based on Adaptive Moving Average Method. Anal Chem 2018; 90:6773-6780. [DOI: 10.1021/acs.analchem.8b00664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomas Drevinskas
- Instrumental Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT44404 Kaunas, Lithuania
- Department of Systems’ Analysis, Faculty of Informatics, Vytautas Magnus University, Vileikos 8, LT44404 Kaunas, Lithuania
| | - Laimutis Telksnys
- Department of Systems’ Analysis, Faculty of Informatics, Vytautas Magnus University, Vileikos 8, LT44404 Kaunas, Lithuania
- Recognition Processes Department, Institute of Mathematics and Informatics, Goštauto 12, LT01108 Vilnius, Lithuania
| | - Audrius Maruška
- Instrumental Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT44404 Kaunas, Lithuania
| | - Jelena Gorbatsova
- Department of Chemistry, Faculty of Sciences, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Mihkel Kaljurand
- Instrumental Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT44404 Kaunas, Lithuania
- Department of Chemistry, Faculty of Sciences, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
10
|
Marín F, Navarrete H, Narvaez-Trujillo A. Total Petroleum Hydrocarbon Degradation by Endophytic Fungi from the Ecuadorian Amazon. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aim.2018.812070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J Environ Sci (China) 2017; 51:52-74. [PMID: 28115152 DOI: 10.1016/j.jes.2016.08.023] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a large group of chemicals. They represent an important concern due to their widespread distribution in the environment, their resistance to biodegradation, their potential to bioaccumulate and their harmful effects. Several pilot treatments have been implemented to prevent economic consequences and deterioration of soil and water quality. As a promising option, fungal enzymes are regarded as a powerful choice for degradation of PAHs. Phanerochaete chrysosporium, Pleurotus ostreatus and Bjerkandera adusta are most commonly used for the degradation of such compounds due to their production of ligninolytic enzymes such as lignin peroxidase, manganese peroxidase and laccase. The rate of biodegradation depends on many culture conditions, such as temperature, oxygen, accessibility of nutrients and agitated or shallow culture. Moreover, the addition of biosurfactants can strongly modify the enzyme activity. The removal of PAHs is dependent on the ionization potential. The study of the kinetics is not completely comprehended, and it becomes more challenging when fungi are applied for bioremediation. Degradation studies in soil are much more complicated than liquid cultures because of the heterogeneity of soil, thus, many factors should be considered when studying soil bioremediation, such as desorption and bioavailability of PAHs. Different degradation pathways can be suggested. The peroxidases are heme-containing enzymes having common catalytic cycles. One molecule of hydrogen peroxide oxidizes the resting enzyme withdrawing two electrons. Subsequently, the peroxidase is reduced back in two steps of one electron oxidation. Laccases are copper-containing oxidases. They reduce molecular oxygen to water and oxidize phenolic compounds.
Collapse
Affiliation(s)
- Tayssir Kadri
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada.
| | - Maximiliano Cledon
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Saurabhjyoti Sarma
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Mausam Verma
- CO(2) Solutions Inc., 2300, rue Jean-Perrin, Québec, QC G2C 1T9, Canada
| |
Collapse
|
12
|
Barone R, de Biasi MG, Piccialli V, de Napoli L, Oliviero G, Borbone N, Piccialli G. Degradation of some representative polycyclic aromatic hydrocarbons by the water-soluble protein extracts from Zea mays L. cv PR32-B10. CHEMOSPHERE 2016; 160:258-265. [PMID: 27391049 DOI: 10.1016/j.chemosphere.2016.06.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 05/10/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
The ability of the water-soluble protein extracts from Zea mais L. cv. PR32-B10 to degrade some representative polycyclic aromatic hydrocarbons (PAHs), has been evaluated. Surface sterilized seeds of corn (Zea mais L. Pioneer cv. PR32-B10) were hydroponically cultivated in a growth chamber under no-stressful conditions. The water-soluble protein extracts isolated from maize tissues showed peroxidase, polyphenol oxidase and catalase activities. Incubation of the extracts with naphthalene, fluorene, phenanthrene and pyrene, led to formation of oxidized and/or degradation products. GC-MS and TLC monitoring of the processes showed that naphthalene, phenanthrene, fluorene and pyrene underwent 100%, 78%, 92% and 65% oxidative degradation, respectively, after 120 min. The chemical structure of the degradation products were determined by (1)H NMR and ESI-MS spectrometry.
Collapse
Affiliation(s)
- Roberto Barone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | | | - Vincenzo Piccialli
- Department of Chemical Sciences, University of Naples Federico II, Via Cyntia 4, 80126, Naples, Italy.
| | - Lorenzo de Napoli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Giorgia Oliviero
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy; Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131, Naples, Italy
| |
Collapse
|