1
|
Dirak M, Chan J, Kolemen S. Optical imaging probes for selective detection of butyrylcholinesterase. J Mater Chem B 2024; 12:1149-1167. [PMID: 38196348 DOI: 10.1039/d3tb02468g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Butyrylcholinesterase (BChE), a member of the human serine hydrolase family, is an essential enzyme for cholinergic neurotransmission as it catalyzes the hydrolysis of acetylcholine. It also plays central roles in apoptosis, lipid metabolism, and xenobiotic detoxification. On the other side, abnormal levels of BChE are directly associated with the formation of pathogenic states such as neurodegenerative diseases, psychiatric and cardiovascular disorders, liver damage, diabetes, and cancer. Thus, selective and sensitive detection of BChE level in living organisms is highly crucial and is of great importance to further understand the roles of BChE in both physiological and pathological processes. However, it is a very complicated task due to the potential interference of acetylcholinesterase (AChE), the other human cholinesterase, as these two enzymes share a very similar substrate scope. To this end, optical imaging probes have attracted immense attention in recent years as they have modular structures, which can be tuned precisely to satisfy high selectivity toward BChE, and at the same time they offer real time and nondestructive imaging opportunities with a high spatial and temporal resolution. Here, we summarize BChE selective imaging probes by discussing the critical milestones achieved during the development process of these molecular sensors over the years. We put a special emphasis on design principles and biological applications of highly promising new generation activity-based probes. We also give a comprehensive outlook for the future of BChE-responsive probes and highlight the ongoing challenges. This collection marks the first review article on BChE-responsive imaging agents.
Collapse
Affiliation(s)
- Musa Dirak
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Safacan Kolemen
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| |
Collapse
|
2
|
Duong K, Maleknia S, Clases D, Minett A, Padula MP, Doble PA, Gonzalez de Vega R. Immunoaffinity extraction followed by enzymatic digestion for the isolation and identification of proteins employing automated μSPE reactors and mass spectrometry. Anal Bioanal Chem 2023; 415:4173-4184. [PMID: 36369591 PMCID: PMC10328895 DOI: 10.1007/s00216-022-04381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
This work describes a novel automated and rapid method for bottom-up proteomics combining protein isolation with a micro-immobilised enzyme reactor (IMER). Crosslinking chemistry based on 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling was exploited to immobilise trypsin and antibodies onto customisable silica particles coated with carboxymethylated dextran (CMD). This novel silica-CMD solid-phase extraction material was characterised using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), conductometric titrations and enzymatic colorimetric assays. Micro-solid-phase extraction (μSPE) cartridges equipped with the modified CMD material were employed and integrated into an automated and repeatable workflow using a sample preparation workstation to achieve rapid and repeatable protein isolation and pre-concentration, followed by tryptic digestion producing peptide fragments that were identified by liquid chromatography mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- Karen Duong
- The Atomic Medicine Initiative, University of Technology Sydney, Ultimo, Australia
| | - Simin Maleknia
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - David Clases
- The Atomic Medicine Initiative, University of Technology Sydney, Ultimo, Australia
- Nano Micro LAB, Institute of Chemistry, University of Graz, Graz, Austria
| | | | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology Sydney, Ultimo, Australia
| | - Raquel Gonzalez de Vega
- The Atomic Medicine Initiative, University of Technology Sydney, Ultimo, Australia.
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Graz, Austria.
| |
Collapse
|
3
|
Morellon-Sterling R, Tavano O, Bolivar JM, Berenguer-Murcia Á, Vela-Gutiérrez G, Sabir JSM, Tacias-Pascacio VG, Fernandez-Lafuente R. A review on the immobilization of pepsin: A Lys-poor enzyme that is unstable at alkaline pH values. Int J Biol Macromol 2022; 210:682-702. [PMID: 35508226 DOI: 10.1016/j.ijbiomac.2022.04.224] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/05/2022]
Abstract
Pepsin is a protease used in many different applications, and in many instances, it is utilized in an immobilized form to prevent contamination of the reaction product. This enzyme has two peculiarities that make its immobilization complex. The first one is related to the poor presence of primary amino groups on its surface (just one Lys and the terminal amino group). The second one is its poor stability at alkaline pH values. Both features make the immobilization of this enzyme to be considered a complicated goal, as most of the immobilization protocols utilize primary amino groups for immobilization. This review presents some of the attempts to get immobilized pepsin biocatalyst and their applications. The high density of anionic groups (Asp and Glu) make the anion exchange of the enzyme simpler, but this makes many of the strategies utilized to immobilize the enzyme (e.g., amino-glutaraldehyde supports) more related to a mixed ion exchange/hydrophobic adsorption than to real covalent immobilization. Finally, we propose some possibilities that can permit not only the covalent immobilization of this enzyme, but also their stabilization via multipoint covalent attachment.
Collapse
Affiliation(s)
- Roberto Morellon-Sterling
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Juan M Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., Madrid 28040, Spain
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Gilber Vela-Gutiérrez
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
4
|
Lv Q, Yu HL, Yang Y, Meng FH, Dai XD, Jiang PY, Liu CC. Screening of monoclonal antibodies against specific phosphonylation sites and analysis of serum samples exposed to soman and VX using an indirect competitive enzyme-linked immunosorbent assay. Anal Bioanal Chem 2022; 414:2713-2724. [PMID: 35083511 DOI: 10.1007/s00216-022-03914-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Organophosphorus nerve agents (OPNAs) covalently bind to tyrosine 411 of human serum albumin (HSA) and the formed adducts are stable biomarkers of OPNA exposure. The detection of these adducts has been limited to mass spectrometry techniques combined with protein digestion. Here, we developed indirect competitive ELISA (icELISA) methods to verify OPNA exposure by the detection of OPNA-phosphonylated adducts at tyrosine 411 residue (OPNA-HSA adducts), in which monoclonal antibodies (mAbs) against phosphonylation sites at tyrosine 411 were introduced. The two mAbs were prepared by the fourth generation of rabbit mAb technology using the phosphonylated peptides of LVRY(GD or VX)TKKVPQC as the haptens. These mAbs were screened using our developed competitive ELISA method and then selected based on their individual affinity and selectivity. As a result, we obtained two mAbs that recognized the HSA Tyr 411 adduct of GD (mAb-5G2) or VX (mAb-12B9), respectively. They shared the highest affinity exhibiting a Kd value of about 10-6 mol/L of the OPNA exposure concentration. They also had remarkable selectivity, which could especially recognize their individual OPNA-HSA adducts in a native state but did not recognize other OPNA-HSAs and unadducted HSAs. Especially for mAb-12B9, it could clearly distinguish VX-HSA and GB-HSA between which there was only one alkyl difference in their phosphonyl portion of the adducted sites. The two mAbs were then used to build the icELISA method for analysis of the serum samples exposed to OPNA. It was found that the detectable lowest GD- and VX-exposed concentrations in serum samples were respectively 1.0 × 10-6 mol/L and 10.0 × 10-6 mol/L. This study provides one novel approach and strategy for the retrospective detection of OPNA exposure, and the two mAbs have great potential to be extended for point-of-care testing of OPNA intoxication.
Collapse
Affiliation(s)
- Qiao Lv
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Hui-Lan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
- Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China.
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Fan-Hua Meng
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xian-Dong Dai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Pei-Yu Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | - Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
- Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China.
| |
Collapse
|
5
|
Hallez F, Combès A, Desoubries C, Bossée A, Pichon V. Development of an immobilized-trypsin reactor coupled to liquid chromatography and tandem mass spectrometry for the analysis of human hemoglobin adducts with sulfur mustard. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:123031. [PMID: 34781109 DOI: 10.1016/j.jchromb.2021.123031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
Sulfur mustard reacts with blood proteins, such as hemoglobin, to form stable adducts that can be used as long-lived biomarkers of exposure. These adducts can be analyzed by liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS) after an enzymatic digestion step. The objective of this study was to develop trypsin-based immobilized enzyme reactors (IMERs) in order to obtain a faster digestion of hemoglobin than the conventional in-solution digestion. Trypsin IMERs were synthetized by grafting the enzyme on a CNBr-Sepharose gel and the influence of several parameters on the digestion yields, such as the transfer volume between the injection loop and the IMER, the temperature and the digestion time was studied. The repeatability of the digestion on three laboratory-made IMERs was demonstrated for pure hemoglobin and hemoglobin previously exposed to different concentrations of sulfur mustard (RSD inferior to 13% and 21% respectively) and was better than that obtained for in-solution digestions (RSD inferior to 28% and up to 53% respectively). A preferential adduction of sulfur mustard on the histidine residues of hemoglobin was confirmed, for both in-solution and IMER digestion results. On a quantitative point of view, the performances of in-solution and IMER digestions were similar, with the theoretical possibility to detect peptides resulting from the in vitro incubation of hemoglobin in pure water with sulfur mustard at 7.5 ng⋅mL-1. However, digestion on IMER proved to be more repeatable and 32 times faster than in-solution digestion, and a given IMER could be reused at least 60 times.
Collapse
Affiliation(s)
- Florine Hallez
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Charlotte Desoubries
- DGA, CBRN Defence, Analytical Chemistry Department, 5 rue Lavoisier, 91710 Vert-le-Petit, France
| | - Anne Bossée
- DGA, CBRN Defence, Analytical Chemistry Department, 5 rue Lavoisier, 91710 Vert-le-Petit, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005 Paris, France; Sorbonne Université, Campus UPMC, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
6
|
Wouters B, Currivan S, Abdulhussain N, Hankemeier T, Schoenmakers P. Immobilized-enzyme reactors integrated into analytical platforms: Recent advances and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
McKitterick N, Bicak TC, Switnicka-Plak MA, Cormack PAG, Reubsaet L, Halvorsen TG. On-line duplex molecularly imprinted solid-phase extraction for analysis of low-abundant biomarkers in human serum by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1655:462490. [PMID: 34479097 DOI: 10.1016/j.chroma.2021.462490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/01/2022]
Abstract
In the present work, a pair of molecularly imprinted polymers (MIPs) targeting distinct peptide targets were packed into trap columns and combined for automated duplex analysis of two low abundant small cell lung cancer biomarkers (neuron-specific enolase [NSE] and progastrin-releasing peptide [ProGRP]). Optimization of the on-line molecularly imprinted solid-phase extraction (MISPE) protocol ensured that the MIPs had the necessary affinity and selectivity towards their respective signature peptide targets - NLLGLIEAK (ProGRP) and ELPLYR (NSE) - in serum. Two duplex formats were evaluated: a physical mixture of the two MIPs (1:1 w/w ratio) inside a single trap column, and two separate MIP trap columns connected in series. Both duplex formats enabled the extraction of the peptides from serum. However, the trap columns in series gave superior extraction efficiency (85.8±3.8% and 49.1±6.7% for NLLGLIEAK and ELPLYR, respectively). The optimized protocol showed satisfactory intraday (RSD≤23.4 %) and interday (RSD≤14.6%) precision. Duplex analysis of NSE and ProGRP spiked into digested human serum was linear (R2≥0.98) over the disease range (0.3-30 nM). The estimated limit of detection (LOD) and limit of quantification (LOQ) were 0.11 nM and 0.37 nM, respectively, for NSE, and 0.06 nM and 0.2 nM, respectively, for ProGRP. Both biomarkers were determined at clinically relevant levels. To the best of our knowledge, the present work is the first report of an automated MIP duplex biomarker analysis. It represents a proof of concept for clinically viable duplex analysis of low abundant biomarkers present in human serum or other biofluids.
Collapse
Affiliation(s)
- Nicholas McKitterick
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Tugrul Cem Bicak
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Magdalena A Switnicka-Plak
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Peter A G Cormack
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK.
| | - Léon Reubsaet
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Trine Grønhaug Halvorsen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
8
|
Roberg-Larsen H, Wilson SR, Lundanes E. Recent advances in on-line upfront devices for sensitive bioanalytical nano LC methods. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
John H, Thiermann H. Poisoning by organophosphorus nerve agents and pesticides: An overview of the principle strategies and current progress of mass spectrometry-based procedures for verification. J Mass Spectrom Adv Clin Lab 2021; 19:20-31. [PMID: 34820662 PMCID: PMC8601002 DOI: 10.1016/j.jmsacl.2021.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/02/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Evidence of poisoning with organophosphorus (OP) nerve agents requires biomedical verification. OP nerve agents undergo common biotransformation pathways producing valuable biomarkers. Internationally accepted methods target remaining poison, hydrolysis products and protein-adducts. Mass spectrometry-based methods provide optimum selectivity and sensitivity for identification. Methods, strategies, current proceedings, quality criteria and real cases of poisoning are presented.
Intoxication by organophosphorus (OP) poisons, like nerve agents and pesticides, is characterized by the life-threatening inhibition of acetylcholinesterase (AChE) caused by covalent reaction with the serine residue of the active site of the enzyme (phosphylation). Similar reactions occur with butyrylcholinesterase (BChE) and serum albumin present in blood as dissolved proteins. For forensic purposes, products (adducts) with the latter proteins are highly valuable long-lived biomarkers of exposure to OP agents that are accessible by diverse mass spectrometric procedures. In addition, the evidence of poison incorporation might also succeed by the detection of remaining traces of the agent itself, but more likely its hydrolysis and/or enzymatic degradation products. These relatively short-lived molecules are distributed in blood and tissue, and excreted via urine. This review presents the mass spectrometry-based methods targeting the different groups of biomarkers in biological samples, which are already internationally accepted by the Organisation for the Prohibition of Chemical Weapons (OPCW), introduces novel approaches in the field of biomedical verification, and outlines the strict quality criteria that must be fulfilled for unambiguous forensic analysis.
Collapse
|
10
|
Chromatographic analysis of chemical warfare agents and their metabolites in biological samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Fu F, Liu H, Lu X, Zhang R, Li L, Gao R, Xie J, Wang H, Pei C. Identification of S419 on human serum albumin as a novel biomarker for sarin and cyclosarin exposure. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8721. [PMID: 31899842 DOI: 10.1002/rcm.8721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Organophosphorus nerve agents are highly toxic because they inhibit acetylcholinesterase activity, thereby causing a series of symptomatic poisoning. Upon entering the body, nerve agents bind active amino acid residues to form phosphonylated adducts. A potentially beneficial method for specific verification of exposure of nerve agents is based on albumin adducts, which have a half-life of 18 days. This appears to be more effective than the fluoride reactivation method, based on acetylcholinesterase. METHODS After the exposure of human serum albumin to nine nerve agents, human serum albumin was denatured, reduced, alkylated and digested with trypsin according to standard mass spectrometry-based proteomics procedures. The phosphonylated peptides of human serum albumin were identified using positive ion electrospray ionization with a quadrupole orbitrap mass spectrometer. RESULTS The peptide KVPQVSTPTLVESR showed a good mass spectrometric response to the nine nerve agents. The tendency of sarin and cyclosarin was to bind to S419 on the peptide, while the other nerve agents (tabun, soman and V-type nerve agents) were shown to bind more readily to K414 on the peptide. CONCLUSIONS This research revealed a new site, S419, of the tryptic peptide KVPQVSTPTLVEVSR on human albumin to be a valuable biomarker for sarin/cyclosarin exposure, helping to further distinguish sarin and cyclosarin poisoning from that of other nerve agents and providing an important tool for the identification of sarin or cyclosarin in terrorist attacks.
Collapse
Affiliation(s)
- Feiyan Fu
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Haibo Liu
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Xiaogang Lu
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Runli Gao
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Jianwei Xie
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Chengxin Pei
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| |
Collapse
|
12
|
Fu F, Liu H, Gao R, Zhao P, Lu X, Zhang R, Wang L, Wang H, Pei C. Protein adduct binding properties of tabun-subtype nerve agents after exposure in vitro and in vivo. Toxicol Lett 2020; 321:1-11. [DOI: 10.1016/j.toxlet.2019.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
|
13
|
Dubrovskii Y, Murashko E, Chuprina O, Beltyukov P, Radilov A, Solovyev N, Babakov V. Mass spectrometry based proteomic approach for the screening of butyrylcholinesterase adduct formation with organophosphates. Talanta 2019; 197:374-382. [DOI: 10.1016/j.talanta.2019.01.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 11/29/2022]
|
14
|
Purification of human butyrylcholinesterase from frozen Cohn fraction IV-4 by ion exchange and Hupresin affinity chromatography. PLoS One 2019; 14:e0209795. [PMID: 30625168 PMCID: PMC6326467 DOI: 10.1371/journal.pone.0209795] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
Human butyrylcholinesterase (HuBChE) is being developed as a therapeutic for protection from the toxicity of nerve agents. An enriched source of HuBChE is Cohn fraction IV-4 from pooled human plasma. For the past 40 years, purification of HuBChE has included affinity chromatography on procainamide-Sepharose. The present report supports a new affinity sorbent, Hupresin, for purification of HuBChE from Cohn fraction IV-4. Nine batches of 70–80 kg frozen Cohn fraction were extracted with water, filtered, and chromatographed on 30 L of Q-Ceramic ion exchange sorbent at pH 4.5. The 4% pure Q-eluent was pumped onto 4.2 L Hupresin, where contaminants were washed off with 0.3 M NaCl in 20 mM sodium phosphate pH 8.0, before 99% pure HuBChE was eluted with 0.1 M tetramethylammonium bromide. The average yield was 1.5 g of HuBChE from 80 kg Cohn paste. Recovery of HuBChE was reduced by 90% when the paste was stored at -20°C for 1 year, and reduced 100% when stored at 4°C for 24h. No reduction in HuBChE recovery occurred when paste was stored at -80°C for 3 months or 3 years. Hupresin and procainamide-Sepharose were equally effective at purifying HuBChE from Cohn fraction. HuBChE in Cohn fraction required 1000-fold purification to attain 99% purity, but 15,000-fold purification when the starting material was plasma. HuBChE (P06276) purified from Cohn fraction was a 340 kDa tetramer of 4 identical N-glycated subunits, stable for years in solution or as a lyophilized product.
Collapse
|
15
|
Levernæs MCS, Brandtzaeg OK, Amundsen SF, Reubsaet L, Lundanes E, Halvorsen TG, Wilson SR. Selective Fishing for Peptides with Antibody-Immobilized Acrylate Monoliths, Coupled Online with NanoLC-MS. Anal Chem 2018; 90:13860-13866. [DOI: 10.1021/acs.analchem.8b00935] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maren C. S. Levernæs
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo NO-0316, Norway
| | | | - Sunniva Furre Amundsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo NO-0316, Norway
| | - Léon Reubsaet
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo NO-0316, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Trine G. Halvorsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo NO-0316, Norway
| | - Steven R. Wilson
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
16
|
Purification of recombinant human butyrylcholinesterase on Hupresin®. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:109-115. [PMID: 30384187 DOI: 10.1016/j.jchromb.2018.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Abstract
Affinity chromatography on procainamide-Sepharose has been an important step in the purification of butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) since its introduction in 1978. The procainamide affinity gel has limitations. In the present report a new affinity gel called Hupresin® was evaluated for its ability to purify truncated, recombinant human butyrylcholinesterase (rHuBChE) expressed in a stably transfected Chinese Hamster Ovary cell line. We present a detailed example of the purification of rHuBChE secreted into 3940 mL of serum-free culture medium. The starting material contained 13,163 units of BChE activity (20.9 mg). rHuBChE was purified to homogeneity in a single step by passage over 82 mL of Hupresin® eluted with 0.1 M tetramethylammonium bromide in 20 mM TrisCl pH 7.5. The fraction with the highest specific activity of 630 units/mg contained 11 mg of BChE. Hupresin® is superior to procainamide-Sepharose for purification of BChE, but is not suitable for purifying native AChE because Hupresin® binds AChE so tightly that AChE is not released with buffers, but is desorbed with denaturing solvents such as 50% acetonitrile or 1% trifluoroacetic acid. Procainamide-Sepharose will continue to be useful for purification of AChE.
Collapse
|
17
|
Novel cysteine- and albumin-adduct biomarkers to prove human poisoning with the pesticide oxydemeton-S-methyl. Toxicol Lett 2018; 294:122-134. [DOI: 10.1016/j.toxlet.2018.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
|
18
|
Onder S, Schopfer LM, Cashman JR, Tacal O, Johnson RC, Blake TA, Lockridge O. Use of Hupresin To Capture Red Blood Cell Acetylcholinesterase for Detection of Soman Exposure. Anal Chem 2017; 90:974-979. [PMID: 29172437 PMCID: PMC5757501 DOI: 10.1021/acs.analchem.7b04160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Toxicity from acute exposure to nerve
agents and organophosphorus
toxicants is due to irreversible inhibition of acetylcholinesterase
(AChE) in the nervous system. AChE in red blood cells is a surrogate
for AChE in the nervous system. Previously we developed an immunopurification
method to enrich red blood cell AChE (RBC AChE) as a biomarker of
exposure. The goal of the present work was to provide an alternative
RBC AChE enrichment strategy, by binding RBC AChE to Hupresin affinity
gel. AChE was solubilized from frozen RBC by addition of 1% Triton
X-100. Insoluble debris was removed by centrifugation. The red, but
not viscous, RBC AChE solution was loaded on a Hupresin affinity column.
Hemoglobin and other proteins were washed off with 3 M NaCl, while
retaining AChE bound to Hupresin. Denatured AChE was eluted with 1%
trifluoroacetic acid. The same protocol was used for 20 mL of RBC
AChE inhibited with a soman model compound. The acid denatured protein
was digested with pepsin and analyzed by liquid chromatography tandem
mass spectrometry on a 6600 Triple-TOF mass spectrometer. A targeted
method identified the aged soman adduct on serine 203 in peptide FGESAGAAS. It was concluded that Hupresin can be used to enrich
soman-inhibited AChE solubilized from 8 mL of frozen human erythrocytes,
yielding a quantity sufficient for detecting soman exposure.
Collapse
Affiliation(s)
- Seda Onder
- Hacettepe University , Department of Biochemistry, School of Pharmacy, 06100 Ankara, Turkey.,Eppley Institute, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - John R Cashman
- Human BioMolecular Research Institute , 5310 Eastgate Mall, San Diego, California 92121, United States
| | - Ozden Tacal
- Hacettepe University , Department of Biochemistry, School of Pharmacy, 06100 Ankara, Turkey
| | - Rudolph C Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , 4770 Buford Highway, Chamblee, Georgia 30341, United States
| | - Thomas A Blake
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , 4770 Buford Highway, Chamblee, Georgia 30341, United States
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|