1
|
Rathnayaka C, Amarasekara CA, Akabirov K, Murphy MC, Park S, Witek MA, Soper SA. Nanofluidic devices for the separation of biomolecules. J Chromatogr A 2022; 1683:463539. [PMID: 36223665 PMCID: PMC9795076 DOI: 10.1016/j.chroma.2022.463539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/30/2022]
Abstract
Over the last 30-years, microchip electrophoresis and its applications have expanded due to the benefits it offers. Nanochip electrophoresis, on the other hand, is viewed as an evolving area of electrophoresis because it offers some unique advantages not associated with microchip electrophoresis. These advantages arise from unique phenomena that occur in the nanometer domain not readily apparent in the microscale domain due to scale-dependent effects. Scale-dependent effects associated with nanochip electrophoresis includes high surface area-to-volume ratio, electrical double layer overlap generating parabolic flow even for electrokinetic pumping, concentration polarization, transverse electromigration, surface charge dominating flow, and surface roughness. Nanochip electrophoresis devices consist of channels with dimensions ranging from 1 to 1000 nm including classical (1-100 nm) and extended (100 nm - 1000 nm) nanoscale devices. In this review, we highlight scale-dependent phenomena associated with nanochip electrophoresis and the utilization of those phenomena to provide unique biomolecular separations that are not possible with microchip electrophoresis. We will also review the range of materials used for nanoscale separations and the implication of material choice for the top-down fabrication and operation of these devices. We will also provide application examples of nanochip electrophoresis for biomolecule separations with an emphasis on nano-electrophoresis (nEP) and nano-electrochromatography (nEC).
Collapse
Affiliation(s)
- Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Charuni A Amarasekara
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Khurshed Akabirov
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Michael C Murphy
- Center of BioModular Multiscale Systems for Precision Medicine, USA; Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, USA; Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Malgorzata A Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA; Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA; Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA; KU Cancer Center and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
2
|
Periyathambi P, Balian A, Hu Z, Padro D, Hernandez LI, Uvdal K, Duarte J, Hernandez FJ. Activatable MRI probes for the specific detection of bacteria. Anal Bioanal Chem 2021; 413:7353-7362. [PMID: 34704109 PMCID: PMC8626403 DOI: 10.1007/s00216-021-03710-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Activatable fluorescent probes have been successfully used as molecular tools for biomedical research in the last decades. Fluorescent probes allow the detection of molecular events, providing an extraordinary platform for protein and cellular research. Nevertheless, most of the fluorescent probes reported are susceptible to interferences from endogenous fluorescence (background signal) and limited tissue penetration is expected. These drawbacks prevent the use of fluorescent tracers in the clinical setting. To overcome the limitation of fluorescent probes, we and others have developed activatable magnetic resonance probes. Herein, we report for the first time, an oligonucleotide-based probe with the capability to detect bacteria using magnetic resonance imaging (MRI). The activatable MRI probe consists of a specific oligonucleotide that targets micrococcal nuclease (MN), a nuclease derived from Staphylococcus aureus. The oligonucleotide is flanked by a superparamagnetic iron oxide nanoparticle (SPION) at one end, and by a dendron functionalized with several gadolinium complexes as enhancers, at the other end. Therefore, only upon recognition of the MRI probe by the specific bacteria is the probe activated and the MRI signal can be detected. This approach may be widely applied to detect bacterial infections or other human conditions with the potential to be translated into the clinic as an activatable contrast agent.
Collapse
Affiliation(s)
- Prabu Periyathambi
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Alien Balian
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden
| | - Daniel Padro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
| | - Luiza I Hernandez
- Department of Clinical and Experimental Medicine, Linkӧping University, Linköping, Sweden
| | - Kajsa Uvdal
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden
| | - Joao Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22181, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden. .,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
3
|
Qoronfleh MW, Chouchane L, Mifsud B, Al Emadi M, Ismail S. THE FUTURE OF MEDICINE, healthcare innovation through precision medicine: policy case study of Qatar. LIFE SCIENCES, SOCIETY AND POLICY 2020; 16:12. [PMID: 33129349 PMCID: PMC7603723 DOI: 10.1186/s40504-020-00107-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
In 2016, the World Innovation Summit for Health (WISH) published its Forum Report on precision medicine "PRECISION MEDICINE - A GLOBAL ACTION PLAN FOR IMPACT". Healthcare is undergoing a transformation, and it is imperative to leverage new technologies to generate new data and support the advent of precision medicine (PM). Recent scientific breakthroughs and technological advancements have improved our disease knowledge and altered diagnosis and treatment approaches resulting in a more precise, predictive, preventative and personalized health care that is customized for the individual patient. Consequently, the big data revolution has provided an opportunity to apply artificial intelligence and machine learning algorithms to mine such a vast data set. Additionally, personalized medicine promises to revolutionize healthcare, with its key goal of providing the right treatment to the right patient at the right time and dose, and thus the potential of improving quality of life and helping to bring down healthcare costs.This policy briefing will look in detail at the issues surrounding continued development, sustained investment, risk factors, testing and approval of innovations for better strategy and faster process. The paper will serve as a policy bridge that is required to enhance a conscious decision among the powers-that-be in Qatar in order to find a way to harmonize multiple strands of activity and responsibility in the health arena. The end goal will be for Qatar to enhance public awareness and engagement and to integrate effectively the incredible advances in research into healthcare systems, for the benefit of all patients.The PM policy briefing provides concrete recommendations on moving forward with PM initiatives in Qatar and internationally. Equally important, integration of PM within a primary care setting, building a coalition of community champions through awareness and advocacy, finally, communicating PM value, patient engagement/empowerment and education/continued professional development programs of the healthcare workforce.Key recommendations for implementation of precision medicine inside and outside Qatar: 1. Create Community Awareness and PM Education Programs 2. Engage and Empower Patients 3. Communicate PM Value 4. Develop appropriate Infrastructure and Information Management Systems 5. Integrate PM into standard Healthcare System and Ensure Access to Care PM is no longer futuristic. It is here. Implementing PM in routine clinical care does require some investment and infrastructure development. Invariably, cost and lack of expertise are cited as barriers to PM implementation. Equally consequential, are the curriculum and professional development of medical care experts.Policymakers need to lead and coordinate effort among stakeholders and consider cultural and faith perspectives to ensure success. It is essential that policymakers integrate PM approaches into national strategies to improve health and health care for all, and to drive towards the future of medicine precision health.
Collapse
Affiliation(s)
- M. Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Lotfi Chouchane
- Departments of Genetic Medicine and Microbiology and Immunology, Weill Cornell Medicine, Qatar, Doha, Qatar
| | - Borbala Mifsud
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Maryam Al Emadi
- Clinical Operations, Primary Health Corporation (PHCC), Doha, Qatar
| | - Said Ismail
- Qatar Genome Program, Qatar Foundation, Doha, Qatar
| |
Collapse
|
4
|
Amarasekara CA, Athapattu US, Rathnayaka C, Choi J, Park S, Soper SA. Open-tubular nanoelectrochromatography (OT-NEC): gel-free separation of single stranded DNAs (ssDNAs) in thermoplastic nanochannels. Electrophoresis 2020; 41:1627-1640. [PMID: 33460211 DOI: 10.1002/elps.202000109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
Electrophoresis or electrochromatography carried out in nanometer columns (width and depth) offers some attractive benefits compared to microscale columns. These advantages include unique separation mechanisms that are scale dependent, fast separation times, and simpler workflow due to the lack of a need for column packing and/or wall coatings to create a stationary phase. We report the use of thermoplastics, in this case PMMA, as the substrate for separating single-stranded DNAs (ssDNAs). Electrophoresis nanochannels were created in PMMA using nanoimprint lithography (NIL), which can produce devices at lower cost and in a higher production mode compared to the fabrication techniques required for glass devices. The nanochannel column in PMMA was successful in separating ssDNAs in free solution that was not possible using microchip electrophoresis in PMMA. The separation could be performed in <1 s with resolution >1.5 when carried out using at an electric field strength of 280 V/cm and an effective column length of 60 μm (100 nm × 100 nm, depth and width). The ssDNAs transport through the PMMA column was driven electrokinetically under the influence of an EOF. The results indicated that the separation was dominated by chromatographic effects using an open tubular nano-electrochromatography (OT-NEC) mode of separation. Interesting to these separations was that no column packing was required nor a wall coating to create the stationary phase; the separation was affected using the native polymer that was UV/O3 activated and an aqueous buffer mobile phase.
Collapse
Affiliation(s)
- Charuni A Amarasekara
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA
| | - Uditha S Athapattu
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA
| | - Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA
| | - Junseo Choi
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sunggook Park
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA.,Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas, USA.,Bioengineering Program, The University of Kansas, Lawrence, Kansas, USA.,KU Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
5
|
Roda A, Arduini F, Mirasoli M, Zangheri M, Fabiani L, Colozza N, Marchegiani E, Simoni P, Moscone D. A challenge in biosensors: Is it better to measure a photon or an electron for ultrasensitive detection? Biosens Bioelectron 2020; 155:112093. [DOI: 10.1016/j.bios.2020.112093] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/06/2023]
|
6
|
Swaminathan S, Kumar V, Kaul R. Need for alternatives to animals in experimentation: An Indian perspective. Indian J Med Res 2020; 149:584-592. [PMID: 31417025 PMCID: PMC6702685 DOI: 10.4103/ijmr.ijmr_2047_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Soumya Swaminathan
- Former Director-General, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi 110 029, India
| | - Vijay Kumar
- Division of Basic Medical Sciences, ICMR, Ansari Nagar, New Delhi 110 029, India
| | - Rajni Kaul
- Division of Basic Medical Sciences, ICMR, Ansari Nagar, New Delhi 110 029, India
| |
Collapse
|
7
|
Bregenzer ME, Horst EN, Mehta P, Novak CM, Raghavan S, Snyder CS, Mehta G. Integrated cancer tissue engineering models for precision medicine. PLoS One 2019; 14:e0216564. [PMID: 31075118 PMCID: PMC6510431 DOI: 10.1371/journal.pone.0216564] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumors are not merely cancerous cells that undergo mindless proliferation. Rather, they are highly organized and interconnected organ systems. Tumor cells reside in complex microenvironments in which they are subjected to a variety of physical and chemical stimuli that influence cell behavior and ultimately the progression and maintenance of the tumor. As cancer bioengineers, it is our responsibility to create physiologic models that enable accurate understanding of the multi-dimensional structure, organization, and complex relationships in diverse tumor microenvironments. Such models can greatly expedite clinical discovery and translation by closely replicating the physiological conditions while maintaining high tunability and control of extrinsic factors. In this review, we discuss the current models that target key aspects of the tumor microenvironment and their role in cancer progression. In order to address sources of experimental variation and model limitations, we also make recommendations for methods to improve overall physiologic reproducibility, experimental repeatability, and rigor within the field. Improvements can be made through an enhanced emphasis on mathematical modeling, standardized in vitro model characterization, transparent reporting of methodologies, and designing experiments with physiological metrics. Taken together these considerations will enhance the relevance of in vitro tumor models, biological understanding, and accelerate treatment exploration ultimately leading to improved clinical outcomes. Moreover, the development of robust, user-friendly models that integrate important stimuli will allow for the in-depth study of tumors as they undergo progression from non-transformed primary cells to metastatic disease and facilitate translation to a wide variety of biological and clinical studies.
Collapse
Affiliation(s)
- Michael E. Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eric N. Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Caymen M. Novak
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Catherine S. Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, School of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
8
|
Bagheri N, Cinti S, Caratelli V, Massoud R, Saraji M, Moscone D, Arduini F. A 96-well wax printed Prussian Blue paper for the visual determination of cholinesterase activity in human serum. Biosens Bioelectron 2019; 134:97-102. [PMID: 30959394 DOI: 10.1016/j.bios.2019.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/02/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
In the last decades, there is a growing search for analytical strategies to ensure clinical analysis without the need of laboratory set-up and skilled personnel. Indeed, user-friendly and low-cost devices are highly valued in the era of sustainability for their capability to be applied in low-resource contexts, such as developing countries. To address this issue, herein we report a 96-well paper-based and laboratory setup-free optical platform for the detection of butyrylcholinesterase enzyme (BChE) activity in human serum. We used chromatographic paper to realize a novel analytical tool exploiting its porous structure for reagentless synthesize Prussian Blue Nanoparticles (the sensing element), as well to load all the reagents required for the measurement. The principle of BChE activity detection relies on the reaction between the enzymatic product thiocholine and Prussian Blue, giving the Prussian White with subsequently Prussian Blue's fading, detected by a common office scanner supported by ImageJ software. Using this novel paper-based optical platform, BChE activity was linearly detected in the 2-15 U/mL range with a detection limit down to 0.8 U/mL. The accuracy was successfully demonstrated by recovery study with spiked serum and by comparing the data with the gold standard method.
Collapse
Affiliation(s)
- Neda Bagheri
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Stefano Cinti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Veronica Caratelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Renato Massoud
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
9
|
Liu X, Luo X, Jiang C, Zhao H. Difficulties and challenges in the development of precision medicine. Clin Genet 2019; 95:569-574. [PMID: 30653655 DOI: 10.1111/cge.13511] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/25/2022]
Abstract
The rapid development of precision medicine is introducing a new era of significance in medicine. However, attaining precision medicine is an ambitious goal that is bound to encounter some challenges. Here, we have put forward some difficulties or questions that should be addressed by the progress in this field. The proposed issues include the long road to precision medicine for all types of diseases as the unknown domains of the human genome hinder the development of precision medicine. The challenges in the acquisition and analysis of large amounts of omics data, including difficulties in the establishment of a library of biological samples and large-scale data analysis, as well as the challenges of informed consent and medical ethics in precision medicine, must be overcome to attain the goals of precision medicine. To date, precision medicine programs have accomplished many preliminary achievements and will help to drive a dramatic revolution in clinical practices for the medical community. Through these advances, the diagnosis and treatment of many diseases will achieve many breakthroughs. This project is just beginning and requires a great deal of time and money. Precision medicine also requires extensive collaboration. Ultimately, these difficulties can be overcome. We should realize that precision medicine is good for patients, but there is still a long way to go.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Nephrology, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xin Luo
- Department of Radiotherapy, The Second Hospital of PingLiang City, Second Affiliated Hospital of Gansu Medical College, Pingliang, People's Republic of China
| | - Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Hui Zhao
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| |
Collapse
|
10
|
Andronico LA, Chen L, Mirasoli M, Guardigli M, Quintavalla A, Lombardo M, Trombini C, Chiu DT, Roda A. Thermochemiluminescent semiconducting polymer dots as sensitive nanoprobes for reagentless immunoassay. NANOSCALE 2018; 10:14012-14021. [PMID: 29995031 PMCID: PMC6065506 DOI: 10.1039/c8nr03092h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Thermochemiluminescence (TCL) is a potentially simple and sensitive detection principle, as the light emission is simply elicited by thermally-triggered decomposition of a molecule to produce a singlet excited-state product. Here we report about TCL semiconductive polymer dots (TCL-Pdots) obtained by doping fluorescent cyano-polyphenylene vinylene (CN-PPV) Pdots with an acridine 1,2-dioxetane derivative. The TCL-Pdots showed remarkable stability over time and minimum leaching of the thermo-responsive species. Furthermore, detectability of TCL-Pdots was improved by taking advantage of both the high number of 1,2-dioxetanes entrapped in each nanoparticle (about 20 molecules per Pdot) and the 5-fold enhancement of TCL emission due to energy transfer from 1,2-dioxetane to the polymer matrix, which itself acted as an energy acceptor. Indeed, upon heating the TCL-Pdots to 110 °C, 1,2-dioxetane decomposes generating an acridanone product in its electronically excited state. The latter transfers its energy to the surrounding CN-PPV chains via the Förster mechanism (φFRET about 80%), resulting in intense yellow light emission (550 nm wavelength). We next conjugated streptavidin onto the surface of these TCL-Pdots and demonstrated their suitability for use in biological studies. In particular, we used TCL-Pdots as labels in a model non-competitive immunoassay for IgG detection, which showed a LOD of 13 nM IgG and a dynamic range extending up to 230 nM. By combining the biocompatibility, brightness and tunability of Pdot fluorescence emission with the thermally-triggered reagentless light generation from TCL 1,2-dioxetanes, a broad panel of ultrabright TCL nanosystems could be designed for a variety of bioscience applications, even in multiplexed formats.
Collapse
Affiliation(s)
- Luca A Andronico
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Lei Chen
- Department of Chemistry, University of Washington, Seattle, Washington, 98195 USA.
| | - Mara Mirasoli
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Massimo Guardigli
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Arianna Quintavalla
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Marco Lombardo
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Claudio Trombini
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| | - Daniel T Chiu
- Department of Chemistry, University of Washington, Seattle, Washington, 98195 USA.
| | - Aldo Roda
- Department of Chemistry "G. Ciamician", University of Bologna Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
11
|
Li L, Shi W, Wu X, Li X, Ma H. In vivo tumor imaging by a γ-glutamyl transpeptidase-activatable near-infrared fluorescent probe. Anal Bioanal Chem 2018; 410:6771-6777. [DOI: 10.1007/s00216-018-1181-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/03/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
|