1
|
Govindaraju R, Govindaraju S, Yun K, Kim J. Fluorescent-Based Neurotransmitter Sensors: Present and Future Perspectives. BIOSENSORS 2023; 13:1008. [PMID: 38131768 PMCID: PMC10742055 DOI: 10.3390/bios13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Neurotransmitters (NTs) are endogenous low-molecular-weight chemical compounds that transmit synaptic signals in the central nervous system. These NTs play a crucial role in facilitating signal communication, motor control, and processes related to memory and learning. Abnormalities in the levels of NTs lead to chronic mental health disorders and heart diseases. Therefore, detecting imbalances in the levels of NTs is important for diagnosing early stages of diseases associated with NTs. Sensing technologies detect NTs rapidly, specifically, and selectively, overcoming the limitations of conventional diagnostic methods. In this review, we focus on the fluorescence-based biosensors that use nanomaterials such as metal clusters, carbon dots, and quantum dots. Additionally, we review biomaterial-based, including aptamer- and enzyme-based, and genetically encoded biosensors. Furthermore, we elaborate on the fluorescence mechanisms, including fluorescence resonance energy transfer, photon-induced electron transfer, intramolecular charge transfer, and excited-state intramolecular proton transfer, in the context of their applications for the detection of NTs. We also discuss the significance of NTs in human physiological functions, address the current challenges in designing fluorescence-based biosensors for the detection of NTs, and explore their future development.
Collapse
Affiliation(s)
- Rajapriya Govindaraju
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Saravanan Govindaraju
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Kyusik Yun
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
2
|
Abstract
Rapid and specific assaying of molecules that report on a pathophysiological condition, environmental pollution, or drug concentration is pivotal for establishing efficient and accurate diagnostic systems. One of the main components required for the construction of these systems is the recognition element (receptor) that can identify target analytes. Oligonucleotide switching structures, or aptamers, have been widely studied as selective receptors that can precisely identify targets in different analyzed matrices with minimal interference from other components in an antibody-like recognition process. These aptasensors, especially when integrated into sensing platforms, enable a multitude of sensors that can outperform antibody-based sensors in terms of flexibility of the sensing strategy and ease of deployment to areas with limited resources. Research into compounds that efficiently enhance signal transduction and provide a suitable platform for conjugating aptamers has gained huge momentum over the past decade. The multifaceted nature of conjugated polymers (CPs), notably their versatile electrical and optical properties, endows them with a broad range of potential applications in optical, electrical, and electrochemical signal transduction. Despite the substantial body of research demonstrating the enhanced performance of sensing devices using doped or nanostructure-embedded CPs, few reviews are available that specifically describe the use of conjugated polymers in aptasensing. The purpose of this review is to bridge this gap and provide a comprehensive description of a variety of CPs, from a historical viewpoint, underpinning their specific characteristics and demonstrating the advances in biosensors associated with the use of these conjugated polymers.
Collapse
Affiliation(s)
- Razieh Salimian
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| | - Corinne Nardin
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| |
Collapse
|
3
|
Zheng Q, Duan Z, Zhang Y, Huang X, Xiong X, Zhang A, Chang K, Li Q. Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy. Molecules 2023; 28:5091. [PMID: 37446753 DOI: 10.3390/molecules28135091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Conjugated polymers (CPs) have attracted much attention in the fields of chemistry, medicine, life science, and material science. Researchers have carried out a series of innovative researches and have made significant research progress regarding the unique photochemical and photophysical properties of CPs, expanding the application range of polymers. CPs are polymers formed by the conjugation of multiple repeating light-emitting units. Through precise control of their structure, functional molecules with different properties can be obtained. Fluorescence probes with different absorption and emission wavelengths can be obtained by changing the main chain structure. By modifying the side chain structure with water-soluble groups or selective recognition molecules, electrostatic interaction or specific binding with specific targets can be achieved; subsequently, the purpose of selective recognition can be achieved. This article reviews the research work of CPs in cell imaging, tumor diagnosis, and treatment in recent years, summarizes the latest progress in the application of CPs in imaging, tumor diagnosis, and treatment, and discusses the future development direction of CPs in cell imaging, tumor diagnosis, and treatment.
Collapse
Affiliation(s)
- Qinbin Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhuli Duan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ang Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| | - Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| |
Collapse
|
4
|
Hu Z, Li Y, Figueroa-Miranda G, Musal S, Li H, Martínez-Roque MA, Hu Q, Feng L, Mayer D, Offenhäusser A. Aptamer based biosensor platforms for neurotransmitters analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Hou Y, Hou J, Liu X. Comparison of Two DNA Aptamers for Dopamine Using Homogeneous Binding Assays. Chembiochem 2021; 22:1948-1954. [PMID: 33783945 DOI: 10.1002/cbic.202100006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Dopamine is an essential neurotransmitter and its detection is important for bioanalytical chemistry. Two very different DNA aptamers have been reported for dopamine, one derived from an RNA aptamer (named Apt1) and other obtained via direct aptamer selection (named Apt2). In this study, we used four homogeneous binding assays to compare these two DNA dopamine aptamers. Thiazole orange (TO) fluorescence assay indicated that the Apt2 specifically bound with dopamine with a Kd of 2.37 μM, which was consistent with that from the isothermal titration calorimetry (ITC) assay. However, Apt1 had much less TO fluorescence change and also no signal from ITC. By labeling the two ends of the two aptamers by a fluorophore and a quencher, the aptamer beacons showed binding of dopamine only for Apt2. Finally, the label-free AuNP-based colorimetric assay showed no difference between these two aptamer sequences, and even non-binding random DNA showed the same response, indicating that AuNPs were not a good probe for detecting dopamine. According to the data, Apt1 does not appear to be able to bind dopamine specifically, while Apt2 showed specific binding and could be used for developing related biosensors.
Collapse
Affiliation(s)
- Yaoyao Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China.,Hubei Engineering Research Center of Special Wild Vegetables Breeding and, Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China.,Hubei Engineering Research Center of Special Wild Vegetables Breeding and, Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China.,Hubei Engineering Research Center of Special Wild Vegetables Breeding and, Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, China
| |
Collapse
|
6
|
Liu L, Zhao Q. A simple fluorescence anisotropy assay for detection of bisphenol A using fluorescently labeled aptamer. J Environ Sci (China) 2020; 97:19-24. [PMID: 32933735 DOI: 10.1016/j.jes.2020.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is one of the environmental endocrine disruptors (EDCs), and BPA contamination in environment can cause high risks to human health. Rapid determination of BPA on sites is in high demand in environmental analysis. Taking advantage of aptamers as affinity ligands and fluorescence anisotropy (FA) analysis, we developed a simple and rapid FA assay for BPA by employing a single tetramethylrhodamine (TMR) labeled short 35-mer DNA aptamer against BPA. The assay is based on the BPA-binding induced conformation change of TMR-labeled aptamer and alteration of interaction between TMR and guanine bases, resulting in change of FA signals. We screened the FA change of aptamer probes having TMR label on a specific site of the aptamer upon BPA addition. The aptamer with a TMR label on the 22nd T base showed large FA-decreasing response to BPA and maintained good binding affinity to BPA. By using this TMR-labeled aptamer, we achieved FA detection of BPA with a detection limit of 0.5 μmol/L under the optimized conditions. This assay was selective towards BPA and enabled the detection of BPA spiked in tap water sample, showing the potential applications on water samples.
Collapse
Affiliation(s)
- Liying Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Affiliation(s)
- Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization Hubei Normal University Huangshi China
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Canada
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Canada
| |
Collapse
|
8
|
Tu A, Shang J, Wang Y, Li D, Liu L, Gan Z, Yin Y, Zhang P. Detection of B-type natriuretic peptide by establishing a low-cost and replicable fluorescence resonance energy transfer platform. Mikrochim Acta 2020; 187:331. [PMID: 32415311 DOI: 10.1007/s00604-020-04247-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 11/25/2022]
Abstract
Aiming at the establishment of a sensitive and specific diagnostic method for early heart failure (HF), we developed a cost-effective fluorescence resonance energy transfer (FRET) platform for the detection of B-type natriuretic peptide (BNP), a characteristic biomarker of HF. Graphene oxide (GO) was selected as the FRET receptor in view of its advantages including commercial availability, low-cost and chemical stability, and dye-modified aptamer was used as the energy donor of FRET as well as in charge of the specific recognition of BNP. Based on the ON (strong emission) and OFF (quenching) states of FRET in the presence and absence of BNP, respectively, specific detection of BNP was achieved in the range 0.074-0.56 pg/mL with a limit of detection as low as 45 fg/mL (3σ). This FRET platform was applied to detect BNP in 45 blood samples to demonstrate its practicability in clinical diagnosis. Compared to the commonly used Siemens method (chemiluminescence immunoassay, CLIA) in hospital, our approach is more accurate and specific for HF diagnosis with areas under the receiver operating characteristic curves of 0.869 (95% CI 0.733-1.00, P < 0.05) vs 0.850 (95% CI 0.703-0.997, P < 0.05) and specificity of 68.8% vs 65.6%. This platform is promising in early diagnosis of HF through ultrasensitive and specific detection of BNP. Graphical abstract To solve the clinical diagnostic problem for early heart failure (HF) which lacks sensitivity and specificity, we established a cost-effective and rapid fluorescence analysis method based on fluorescence resonance energy transfer (FRET) platform for the detection of B-type natriuretic peptide (BNP), a characteristic biomarker of HF.
Collapse
Affiliation(s)
- Aiping Tu
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jingchuan Shang
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Wang
- College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Di Li
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Laicheng Liu
- Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zongjie Gan
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Medical Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Pu Zhang
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Yan SR, Foroughi MM, Safaei M, Jahani S, Ebrahimpour N, Borhani F, Rezaei Zade Baravati N, Aramesh-Boroujeni Z, Foong LK. A review: Recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies. Int J Biol Macromol 2020; 155:184-207. [PMID: 32217120 DOI: 10.1016/j.ijbiomac.2020.03.173] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
One of the most studied topics in analytical chemistry and physics is to develop bio-sensors. Aptamers are small single-stranded RNA or DNA oligonucleotides (5-25 kDa), which have advantages in comparison to their antibodies such as physicochemical stability and high binding specificity. They are able to integrate with proteins or small molecules, including intact viral particles, plant lectins, gene-regulation factor, growth factors, antibodies and enzymes. The aptamers have reportedly shown some unique characteristics, including long shelf-life, simple modification to provide covalent bonds to material surfaces, minor batch variation, cost-effectiveness and slight denaturation susceptibility. These features led important efforts toward the development of aptamer-based sensors, known as apta-sensors classified into optical, electrical and mass-sensitive based on the signal transduction mode. This review provided a number of current advancements in selecting, development criteria, and aptamers application with the focus on the effect of apta-sensors, specifically for disease-associated analyses. The review concentrated on the current reports of apta-sensors that are used for evaluating different food and environmental pollutants.
Collapse
Affiliation(s)
- Shu-Rong Yan
- Institute of Smart Finance, Yango University, Fuzhou 350015, China
| | | | - Mohadeseh Safaei
- Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Shohreh Jahani
- Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran; Bam University of Medical Sciences, Bam, Iran
| | - Nasser Ebrahimpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Borhani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory, AlZahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Loke Kok Foong
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
10
|
Tian X, Li Z, Ding N, Zhang J. Near-infrared ratiometric self-assembled theranostic nanoprobe: imaging and tracking cancer chemotherapy. Chem Commun (Camb) 2020; 56:3629-3632. [DOI: 10.1039/d0cc00416b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel near-infrared ratiometric fluorescent theranostic nanoprobe is applied for real-time fluorescence tracking and imaging cancer therapy in vivo and in situ.
Collapse
Affiliation(s)
- Xinwei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Jiahang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| |
Collapse
|
11
|
McConnell EM, Ventura K, Dwyer Z, Hunt V, Koudrina A, Holahan MR, DeRosa MC. In Vivo Use of a Multi-DNA Aptamer-Based Payload/Targeting System To Study Dopamine Dysregulation in the Central Nervous System. ACS Chem Neurosci 2019; 10:371-383. [PMID: 30160936 DOI: 10.1021/acschemneuro.8b00292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The delivery of therapeutics across the blood-brain barrier remains a considerable challenge in investigating central nervous system related processes. In this work, a liposome vehicle was surface-modified with an aptamer that binds to the transferrin receptor and was loaded with two different dopamine-binding aptamer payloads. This system was effectively used to promote the delivery of the aptamer cargo from the peripheral injection site into the brain. The effect of these delivered aptamers on behavior was investigated in vivo in a locomotor task. The first dopamine binding aptamer assessed was a DNA aptamer, the binding of which had been previously validated through the aptamer-based biosensor development reported by several independent research groups. The second aptamer investigated was the result of a novel in vitro selection experiment described herein. Our data suggest that systemic administration of the modified liposomes led to delivery of the dopamine aptamers into the brain. Fluorescence microscopy revealed differential distribution of fluorescence based on the presence or absence of the transferrin receptor aptamer on the surface of fluorescently modified liposomes. In a behavioral experiment using cocaine administration to induce elevated concentrations of neural dopamine, systemic pretreatment with the dopamine aptamer-loaded liposomes reduced cocaine-induced hyperlocomotion. Multiple controls including a transferrin-negative liposome control and transferrin-positive liposomes loaded with either a nonbinding, base-substituted dopamine aptamer or a random oligonucleotide were investigated. None of these controls altered cocaine-induced hyperlocomotion. Chronic systemic administration of the modified liposomes produced no deleterious neurobehavioral or neural degenerative effects. Importantly, this work is one example of an application for this versatile multiaptamer payload/targeting system. Its general application is limited only by the availability of aptamers for specific neural targets.
Collapse
Affiliation(s)
- Erin M. McConnell
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Katelyn Ventura
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Zach Dwyer
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Vernon Hunt
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Anna Koudrina
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Matthew R. Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maria C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
12
|
Taheri RA, Eskandari K, Negahdary M. An electrochemical dopamine aptasensor using the modified Au electrode with spindle-shaped gold nanostructure. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Li D, Gao D, Qi J, Chai R, Zhan Y, Xing C. Conjugated Polymer/Graphene Oxide Complexes for Photothermal Activation of DNA Unzipping and Binding to Protein. ACS APPLIED BIO MATERIALS 2018. [DOI: 10.1021/acsabm.8b00047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources. Molecules 2018; 23:molecules23020344. [PMID: 29414854 PMCID: PMC6017897 DOI: 10.3390/molecules23020344] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
Water pollution has become one of the leading causes of human health problems. Low molecular weight pollutants, even at trace concentrations in water sources, have aroused global attention due to their toxicity after long-time exposure. There is an increased demand for appropriate methods to detect these pollutants in aquatic systems. Aptamers, single-stranded DNA or RNA, have high affinity and specificity to each of their target molecule, similar to antigen-antibody interaction. Aptamers can be selected using a method called Systematic Evolution of Ligands by EXponential enrichment (SELEX). Recent years we have witnessed great progress in developing aptamer selection and aptamer-based sensors for low molecular weight pollutants in water sources, such as tap water, seawater, lake water, river water, as well as wastewater and its effluents. This review provides an overview of aptamer-based methods as a novel approach for detecting low molecular weight pollutants in water sources.
Collapse
|
15
|
Li Q, Jia Y, Feng Z, Liu F. A highly sensitive and selective fluorescent probe without quencher for detection of Pb2+ ions based on aggregation-caused quenching phenomenon. RSC Adv 2018; 8:38929-38934. [PMID: 35558300 PMCID: PMC9090614 DOI: 10.1039/c8ra07903j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Lead is a highly toxic heavy metal, and various functional nucleic acid (FNA)-based biosensors have been developed for the detection of Pb2+ in environmental monitoring. However, most fluorescence biosensors that have been reported were designed on the basis of a double-labeled (fluorophore and quencher group) DNA sequence, which not only involved an inconvenient organic synthesis but also restricted their wider use in practical applications. Here, we utilized a G-rich DNA sequence as a recognition probe and conjugated fluorene (CF) to develop a fluorescence sensor without a quencher based on the aggregation-caused quenching (ACQ) effect. In the presence of Pb2+, the degree of aggregation of CF was reduced because Pb2+ induced the formation of a G-quadruplex structure of the CF-DNA probe, and the fluorescence signal increased with the concentration of Pb2+ (0–1 μM), with a limit of detection of 0.36 nM. This fluorescent probe without a quencher enables the sensitive and selective detection of Pb2+. On the basis of these advantages, the CF-DNA probe represents a promising analytical method for detecting Pb2+. Fluorescent probe with only a fluorophore but no quencher for detecting Pb2+ on the basis of the aggregation-caused quenching (ACQ) phenomenon.![]()
Collapse
Affiliation(s)
- Qianyun Li
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Institute for Advanced Materials
| | - Yongmei Jia
- Institute for Advanced Materials
- Lingnan Normal University
- Zhanjiang 524048
- China
| | - Zongcai Feng
- Institute for Advanced Materials
- Lingnan Normal University
- Zhanjiang 524048
- China
| | - Fang Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|