1
|
Poole CF. Determination of solvation parameter model compound descriptors by gas chromatography. J Chromatogr A 2024; 1717:464711. [PMID: 38320433 DOI: 10.1016/j.chroma.2024.464711] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
The solvation parameter model uses five system independent descriptors to characterize compound properties defined as excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity, A, hydrogen-bond basicity, B, and the gas-liquid partition constant at 25 °C on n-hexadecane, L, to model transfer properties in gas-condensed phase biphasic systems. The E descriptor for compounds liquid at 20 °C is available by calculation using a refractive index value while E for solid compounds at 20 °C and the S, A, B, and L descriptors are determined by experiment. As a single-technique approach, it is shown that with up to 20 retention factor measurements on four columns comprising a poly(siloxane) containing methyloctyl or dimethyldiphenylsiloxane monomers (SPB-Octyl or HP-5), a poly(siloxane) containing methyltrifluoropropylsiloxane monomers (Rtx-OPP or DB-210), a poly(siloxane) containing bis(cyanopropylsiloxane) monomers (HP-88 or SGE BPX-90), and a poly(ethylene glycol) stationary phase (DB-WAXetr or HP-INNOWAX) are suitable for assigning the S, A, and L descriptors. Using the descriptors in the updated WSU compound descriptor database as target values the average absolute error in the descriptor assignments for 52 varied compounds in the temperature range 60-140 °C was 0.072 for E, 0.016 for S, 0.008 for A, and 0.022 for L corresponding to 30 %, 3.5 %, and 0.6 % as a relative average absolute error for E, S, and L, respectively. For the higher temperature range of 160-240 °C and 34 varied compounds that are liquid at 20 °C the average absolute error for the S, A and L descriptors was 0.026, 0.020, and 0.031, respectively, with the largest relative average absolute error for S of 3.2 % (< 1 % for the L descriptor). For 35 varied compounds that are solid at 20 °C the relative absolute error for the E, S, A, and L descriptors in the higher temperature range was 0.068, 0.035, 0.020, and 0.020, respectively, with a relative average absolute error for E (6.5 %), S (3.5 %) and L (0.88 %). The S, A, and L descriptor can be accurately assigned on the four-column system over a wide temperature range. The E descriptor for solid compounds at 20 °C exhibits greater variability than desirable. The B descriptor cannot be assigned by the four-column system, which lack hydrogen-bond acid functional groups, and is only poorly assigned on the weak hydrogen-bond acid ionic liquid column SLB-IL100.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
2
|
Abbasi N, De Silva S, Biswas A, Anderson JL. Ultra-Low Viscosity and High Magnetic Susceptibility Magnetic Ionic Liquids Featuring Functionalized Diglycolic Acid Ester Rare-Earth and Transition Metal Chelates. ACS OMEGA 2023; 8:27751-27760. [PMID: 37546640 PMCID: PMC10399152 DOI: 10.1021/acsomega.3c03938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
Magnetic ionic liquids (MILs) comprise a subcategory of ionic liquids (ILs) and contain a paramagnetic metal center allowing them to be readily manipulated by an external magnetic field. While MILs are popularly employed as solvents in catalysis, separations, and organic synthesis, most low viscosity combinations possess a hydrophilic character that limits their use in aqueous matrices. To date, no study has reported the synthesis and characterization of hydrophobic MILs with viscosities similar to those of hydrophilic MILs and organic solvents while simultaneously exhibiting enhanced magnetic and thermal properties. In this study, diglycolic acid esters are employed as ligands to chelate with paramagnetic metals to produce cations that are paired with metal chelates composed of hexafluoroacetylacetonate ligands to form MILs incorporating multiple metal centers in the cation and anion. Viscosity values below 31.6 cP were obtained for these solvents, the lowest ever reported for hydrophobic MILs. Solubilities in nonpolar solvents such as benzene were observed to be as high as 50% (w/v) MIL-to-solvent ratio while being insoluble in water at concentrations as low as 0.01% (w/v). Effective paramagnetic moment values for these solvents ranged from 5.33 to 15.56 Bohr magnetons (μB), with mixed metal MILs containing multiple lanthanides in the anion generally offering higher magnetic susceptibilities. MILs composed of ligands containing octyl substituents were found to possess thermal stabilities up to 190 °C. The synthetic strategies explored in this study exploit the highly tunable nature of the employed cation and anion pairs to design versatile ultra-low viscosity magnetoactive solvents that possess tremendous potential and applicability in liquid-liquid separation systems, catalysis, and microfluidics where the mechanical movement of the solvent can be easily facilitated using electromagnets.
Collapse
Affiliation(s)
| | - Shashini De Silva
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Anis Biswas
- Ames
National Laboratory—USDOE, Ames, Iowa 50011, United States
| | - Jared L. Anderson
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
González-Martín R, Lodoso-Ruiz E, Trujillo-Rodríguez MJ, Pino V. Magnetic Ionic Liquids in Analytical Microextraction: A Tutorial Review. J Chromatogr A 2022; 1685:463577. [DOI: 10.1016/j.chroma.2022.463577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/27/2022]
|
4
|
Mujtaba Abbasi N, Zeger VR, Biswas A, Anderson JL. Synthesis and characterization of magnetic ionic liquids containing multiple paramagnetic lanthanide and transition metal centers and functionalized diglycolamide ligands. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Alves MS, Neto LCF, Scheid C, Merib J. An overview of magnetic ionic liquids: From synthetic strategies to applications in microextraction techniques. J Sep Sci 2021; 45:258-281. [PMID: 34726337 DOI: 10.1002/jssc.202100599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 11/06/2022]
Abstract
Remarkable progress has been achieved in the application of magnetic ionic liquids in microextraction-based procedures. These materials exhibit unique physicochemical properties of ionic liquids featuring additional responses to magnetic fields by incorporating a paramagnetic component within the chemical structure. This intriguing property can open new horizons in analytical extractions because the solvent manipulation is facilitated. Moreover, the tunable chemical structures of magnetic ionic liquids also allow for task-specific extractions that can significantly increase the method selectivity. This review aimed at providing an up-to-date overview of articles involving synthesis, physicochemical properties, and applications of magnetic ionic liquids highlighting recent developments and configurations. Moreover, a section containing critical evaluation and future trends in magnetic ionic liquid-based extractions is included.
Collapse
Affiliation(s)
- Mônica Silva Alves
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Luiz Carlos Ferreira Neto
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Camila Scheid
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Josias Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
6
|
Varona M, Eor P, Ferreira Neto LC, Merib J, Anderson JL. Metal-containing and magnetic ionic liquids in analytical extractions and gas separations. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Yavir K, Eor P, Kloskowski A, Anderson JL. Polymeric metal-containing ionic liquid sorbent coating for the determination of amines using headspace solid-phase microextraction. J Sep Sci 2021; 44:2620-2630. [PMID: 33892523 DOI: 10.1002/jssc.202100119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/06/2022]
Abstract
This study describes the design, synthesis, and application of polymeric ionic liquid sorbent coatings featuring nickel metal centers for the determination of volatile and semivolatile amines from water samples using headspace solid-phase microextraction. The examined polymeric ionic liquid (PIL) sorbent coatings were composed of two ionic liquid monomers (tetra(3-vinylimidazolium)nickel bis[(trifluoromethyl)sulfonyl]imide [Ni2+ (VIM)4 ] 2[NTf2 - ] and 1-vinyl-3-hexylimidazolium [HVIM+ ][NTf2 - ]), and an ionic liquid cross-linker (1,12-di(3-vinylimidazolium)dodecane [(VIM)2 C12 2+ ] 2[NTf2 - ]). With these ionic liquid monomers and cross-linkers, three different types of coatings were prepared: PIL 1 based on the neat [Ni2+ (VIM)4 ] 2[NTf2 - ] monomer, PIL 2 consisting of the [Ni2+ (VIM)4 ] 2[NTf2 - ] monomer with addition of cross-linker, and PIL 3 composed of the [HVIM+ ][NTf2 - ] monomer and cross-linker. Analytical performance of the prepared sorbent coatings using headspace solid-phase microextraction gas chromatography-mass spectrometry was compared with the polydimethylsiloxane and polyacrylate commercial coatings. The PIL 2 sorbent coating yielded the highest enrichment factors ranging from 5500 to over 160 000 for the target analytes. The developed headspace solid-phase microextraction gas chromatography-mass spectrometry method was applied for the analysis of real samples (the concentration of amines was 200 μg/L), producing relative recovery values in the range of 90.9-120.0% (PIL 1) and 83.0-122.7% (PIL 2) from tap water, and 84.8-112.4% (PIL 1) and 79.2-119.3% (PIL 2) from lake water.
Collapse
Affiliation(s)
- Kateryna Yavir
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Philip Eor
- Department of Chemistry, Iowa State University, Ames, Iowa, USA
| | - Adam Kloskowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | | |
Collapse
|
8
|
Evaluation of different ionic liquid stationary phases for the analysis of carbohydrates by gas chromatography-mass spectrometry. Anal Bioanal Chem 2019; 411:7461-7472. [DOI: 10.1007/s00216-019-02118-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 10/25/2022]
|
9
|
Clark KD, Zhu C, Anderson JL. Maximizing Ion-Tagged Oligonucleotide Loading on Magnetic Ionic Liquid Supports for the Sequence-Specific Extraction of Nucleic Acids. Anal Chem 2019; 91:5945-5952. [PMID: 30995833 DOI: 10.1021/acs.analchem.9b00350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Targeted nucleic acid analysis requires the highly selective extraction of desired DNA fragments in order to minimize interferences from samples with abundant heterogeneous sequences. We previously reported a method based on functionalized oligonucleotide probes known as ion-tagged oligonucleotides (ITOs) that hybridize with complementary DNA targets for subsequent capture using a hydrophobic magnetic ionic liquid (MIL) support. Although the ITO-MIL approach enriched specific DNA sequences in quantities comparable to a commercial magnetic bead-based method, the modest affinity of the ITO for the hydrophobic MIL limited the yield of DNA targets, particularly when stringent wash conditions were applied to remove untargeted DNA. Here, we report the synthesis and characterization of a series of ITOs in which functional groups were installed within the cation and anion components of the tag moiety in order to facilitate loading of the ITO to the MIL support phase. In addition to hydrophobic interactions, we demonstrate that π-π stacking and fluorophilic interactions can be exploited for loading oligonucleotide probes onto MILs. Using a disubstituted ion-tagged oligonucleotide (DTO) possessing two linear C8 groups, nearly quantitative loading of the probe onto the MIL support was achieved. The enhanced stability of the DTO within the MIL solvent permitted successive wash steps without the loss of the DNA target compared to a monosubstituted ITO with a single C8 group that was susceptible to increased loss of analyte. Furthermore, the successful capture of a 120 bp KRAS fragment from human plasma samples followed by real-time quantitative polymerase chain reaction (qPCR) amplification is demonstrated.
Collapse
Affiliation(s)
- Kevin D Clark
- Department of Chemistry , Iowa State University , 1605 Gilman Hall , Ames , Iowa 50011 , United States
| | - Chenghui Zhu
- Department of Chemistry , Iowa State University , 1605 Gilman Hall , Ames , Iowa 50011 , United States
| | - Jared L Anderson
- Department of Chemistry , Iowa State University , 1605 Gilman Hall , Ames , Iowa 50011 , United States
| |
Collapse
|
10
|
Farooq MQ, Chand D, Odugbesi GA, Varona M, Mudryk Y, Anderson JL. Investigating the effect of ligand and cation on the properties of metal fluorinated acetylacetonate based magnetic ionic liquids. NEW J CHEM 2019. [DOI: 10.1039/c9nj02595b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of chemical structure on various physiochemical properties including thermal stability, solvent miscibility, magnetic susceptibility and viscosity is studied for acetylacetone based magnetic ionic liquids.
Collapse
Affiliation(s)
| | - Deepak Chand
- Department of Chemistry
- Iowa State University
- Ames
- USA
| | | | | | - Yaroslav Mudryk
- Division of Materials Science and Engineering
- Ames Laboratory
- Iowa State University
- Ames
- USA
| | | |
Collapse
|
11
|
Trujillo-Rodríguez MJ, Nan H, Varona M, Emaus MN, Souza ID, Anderson JL. Advances of Ionic Liquids in Analytical Chemistry. Anal Chem 2018; 91:505-531. [PMID: 30335970 DOI: 10.1021/acs.analchem.8b04710] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - He Nan
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Marcelino Varona
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Miranda N Emaus
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Israel D Souza
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| | - Jared L Anderson
- Department of Chemistry , Iowa State University , 1605 Gilman Hall, Ames , Iowa 50011 , United States
| |
Collapse
|
12
|
Nan H, Anderson JL. Ionic liquid stationary phases for multidimensional gas chromatography. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|