1
|
Makwakwa TA, Moema ED, Makudali Msagati TA. Method development and optimization for dispersive liquid-liquid microextraction factors using the response surface methodology with desirability function for the ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry determination of organic contaminants in water samples: risk and greenness assessment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7598-7612. [PMID: 39382484 DOI: 10.1039/d4ay01462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A simple, cost effective, and efficient dispersive liquid-liquid microextraction method was developed and optimized for the determination of organic contaminants in different environmental water matrices followed by UHPLC-QTOF-MS analysis. In the preliminary experiments, the univariate optimization approach was used to select tetrachloroethylene and acetonitrile as extraction and disperser solvents, respectively. The significant factors influencing DLLME were screened using full factorial design, and the optimal values for each variable were then derived through further optimization using central composite design with desirability function. The optimal conditions were achieved with 195 μL of tetrachloroethylene as the extraction solvent, 1439 μL of acetonitrile as the disperser solvent, and a sample pH of 5.8. Under these conditions, the method provided detection limits ranging from 0.11-0.48 μg L-1 and recoveries ranging from 23.32-145.43% across all samples. The enrichment factors obtained ranged from 11.66-72.72. The proposed method was then successfully applied in real water samples. Only benzophenone was detected in the concentration range of 0.79-0.88 μg L-1 across all the water samples. The calculated risk quotient resulting from benzophenone exposure in water samples showed a low potential risk to human health and the aquatic ecosystem. The method was also evaluated for its environmental friendliness using various metrics tools such as Analytical Eco-Scale (AES), Green Analytical Procedure Index (GAPI), Analytical GREEnness (AGREE), Analytical Greenness for Sample Preparation (AGREEprep), and Sample Preparation Metric of Sustainability (SPMS). Only AES qualified the method as green while it was considered acceptable and sustainable when assessed using SPMS.
Collapse
Affiliation(s)
- Tlou Auguston Makwakwa
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Johannesburg, Florida, 1709, South Africa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, Florida, 1709, South Africa.
| | - Elsie Dineo Moema
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Johannesburg, Florida, 1709, South Africa
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, Florida, 1709, South Africa.
| |
Collapse
|
2
|
Condensed Phase Membrane Introduction Mass Spectrometry: A Direct Alternative to Fully Exploit the Mass Spectrometry Potential in Environmental Sample Analysis. SEPARATIONS 2023. [DOI: 10.3390/separations10020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Membrane introduction mass spectrometry (MIMS) is a direct mass spectrometry technique used to monitor online chemical systems or quickly quantify trace levels of different groups of compounds in complex matrices without extensive sample preparation steps and chromatographic separation. MIMS utilizes a thin, semi-permeable, and selective membrane that directly connects the sample and the mass spectrometer. The analytes in the sample are pre-concentrated by the membrane depending on their physicochemical properties and directly transferred, using different acceptor phases (gas, liquid or vacuum) to the mass spectrometer. Condensed phase (CP) MIMS use a liquid as a medium, extending the range to new applications to less-volatile compounds that are challenging or unsuitable to gas-phase MIMS. It directly allows the rapid quantification of selected compounds in complex matrices, the online monitoring of chemical reactions (in real-time), as well as in situ measurements. CP-MIMS has expanded beyond the measurement of several organic compounds because of the use of different types of liquid acceptor phases, geometries, dimensions, and mass spectrometers. This review surveys advancements of CP-MIMS and its applications to several molecules and matrices over the past 15 years.
Collapse
|
3
|
Derivatization Strategies in Flavor Analysis: An Overview over the Wine and Beer Scenario. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wine and beer are the most appreciated and consumed beverages in the world. This success is mainly due to their characteristic taste, smell, and aroma, which can delight consumer’s palates. These olfactory characteristics are produced from specific classes of volatile compounds called “volatile odor-active compounds” linked to different factors such as age and production. Given the vast market of drinking beverages, the characterization of these odor compounds is increasingly important. However, the chemical complexity of these beverages has led the scientific community to develop several analytical techniques for extracting and quantifying these molecules. Even though the recent “green-oriented” trend is directed towards direct preparation-free procedures, for some class of analytes a conventional step like derivatization is unavoidable. This review is a snapshot of the most used derivatization strategies developed in the last 15 years for VOAs’ determination in wine and beer, the most consumed fermented beverages worldwide and among the most complex ones. A comprehensive overview is provided for every method, whereas pros and cons are critically analyzed and discussed. Emphasis was given to miniaturized methods which are more consistent with the principles of “green analytical chemistry”.
Collapse
|
4
|
Monaghan J, Jaeger A, Agua AR, Stanton RS, Pirrung M, Gill CG, Krogh ET. A Direct Mass Spectrometry Method for the Rapid Analysis of Ubiquitous Tire-Derived Toxin N-(1,3-Dimethylbutyl)- N'-phenyl- p-phenylenediamine Quinone (6-PPDQ). ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:1051-1056. [PMID: 38433861 PMCID: PMC10906944 DOI: 10.1021/acs.estlett.1c00794] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The oxidative transformation product of a common tire preservative, identified as N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ), has recently been found to contribute to "urban runoff mortality syndrome" in Coho salmon at nanogram per liter levels. Given the number of fish-bearing streams with multiple stormwater inputs, large-scale campaigns to identify 6-PPDQ sources and evaluate mitigation strategies will require sensitive, high-throughput analytical methods. We report the development and optimization of a direct sampling tandem mass spectrometry method for semiquantitative 6-PPDQ determinations using a thin polydimethylsiloxane membrane immersion probe. The method requires no sample cleanup steps or chromatographic separations, even in complex, heterogeneous samples. Quantitation is achieved by the method of standard additions, with a detection limit of 8 ng/L and a duty cycle of 15 min/sample. High-throughput screening provides semiquantitative concentrations with similar sensitivity and a full analytical duty cycle of 2.5 min/sample. Preliminary data and performance metrics are reported for 6-PPDQ present in representative environmental and stormwater samples. The method is readily adapted for real-time process monitoring, demonstrated by following the dissolution of 6-PPDQ from tire fragments and subsequent removal in response to added sorbents.
Collapse
Affiliation(s)
- Joseph Monaghan
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada V8P 5C2
| | - Angelina Jaeger
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
| | - Alon R. Agua
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan S. Stanton
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Michael Pirrung
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Chris G. Gill
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada V8P 5C2
- Department
of Chemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195-1618, United States
| | - Erik T. Krogh
- Applied
Environmental Research Laboratories, Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia, Canada V9R 5S5
- Department
of Chemistry, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada V8P 5C2
| |
Collapse
|
5
|
Monaghan J, Richards LC, Vandergrift GW, Hounjet LJ, Stoyanov SR, Gill CG, Krogh ET. Direct mass spectrometric analysis of naphthenic acids and polycyclic aromatic hydrocarbons in waters impacted by diluted bitumen and conventional crude oil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144206. [PMID: 33418326 DOI: 10.1016/j.scitotenv.2020.144206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Crude oil spills have well-documented, deleterious impacts on the hydrosphere. In addition to macroscopic effects on wildlife and waterscapes, several classes of petroleum derived compounds, such as naphthenic acids (NAs) and polycyclic aromatic hydrocarbons (PAHs), may be released into the water and present aquatic contamination hazards. The concentrations of these contaminants may be affected by both oil type and water chemistry. We characterize the concentrations of NAs and PAHs in natural and constructed waters, spanning a range of pH and salinity, and directly compare the influence of diluted bitumen (DB) and conventional crude (CC) oil, using condensed-phase membrane introduction mass spectrometry (CP-MIMS) as a direct sampling, on-line technique. The concentration and isomer class profiles of classical NAs in the aqueous phase were assessed using electrospray ionization in negative-ion mode as [M-H]- whereas PAH concentrations were monitored using liquid electron ionization (LEI) in positive-ion mode as [M+•]. NA concentrations (0.03-25 ppm) were highly pH-dependent, and an order of magnitude greater in water samples contaminated with DB than CC. Conversely, concentrations of naphthalene (10-130 ppb) and alkyl-naphthalenes (10-90 ppb) were three to four-fold higher in water samples exposed to CC. We demonstrate that naturally occurring dissolved organic matter does not bias results from the membrane sampling approach employed, and that DB and CC contaminated waters can be differentiated using principal component analysis of the NA isomer class distribution in both constructed and natural waters. Finally, we describe the first demonstration of the concurrent analysis of trace NAs and PAHs in the same water sample by controlling perm-selectivity at the membrane and the ionization mode of the mass spectrometer. The techniques employed here for trace analysis of petroleum derived compounds in water can be applied to rapid screening and real-time monitoring of contamination and remediation processes.
Collapse
Affiliation(s)
- Joseph Monaghan
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Larissa C Richards
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Gregory W Vandergrift
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Lindsay J Hounjet
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada.
| | - Stanislav R Stoyanov
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Chris G Gill
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada; Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Erik T Krogh
- Applied Environmental Research Laboratories, Department of Chemistry, Vancouver Island University, 900 Fifth Street, Nanaimo, British Columbia V9R 5S5, Canada; Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada.
| |
Collapse
|
6
|
Vandergrift GW, Lattanzio-Battle W, Krogh ET, Gill CG. Condensed Phase Membrane Introduction Mass Spectrometry with In Situ Liquid Reagent Chemical Ionization in a Liquid Electron Ionization Source (CP-MIMS-LEI/CI). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:908-916. [PMID: 32154722 DOI: 10.1021/jasms.9b00143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Direct mass spectrometry has grown significantly due to wide applicability, relative ease of use, and high sample throughput. However, many current direct mass spectrometry methods are largely based on ambient ionization techniques that can suffer from matrix effects and poor selectivity. A strategy that addresses these shortcomings is condensed phase membrane introduction mass spectrometry-liquid electron ionization utilizing in situ liquid reagent chemical ionization (CP-MIMS-LEI/CI). In CP-MIMS measurements, a semipermeable hollow fiber polydimethylsiloxane membrane probe is directly immersed into a complex sample. Neutral, hydrophobic analytes permeating the membrane are entrained by a continuously flowing liquid acceptor phase (nL/min) to an LEI/CI source, where the liquid is nebulized, followed by analyte vaporization and ionization. This study marks the first intentional exploitation of the liquid CP-MIMS acceptor phase as an in situ means of providing liquid chemical ionization (CI) reagents for improved analyte sensitivity and selectivity (CP-MIMS-LEI/CI). Acetonitrile and diethyl ether were used as a combination acceptor phase/CI proton transfer reagent system for the direct analysis of dialkyl phthalates. Using isotopically labeled reagents, the gas phase ionization mechanism was found to involve reagent autoprotonation, followed by proton transfer to dialkyl phthalates. A demonstration of the applicability of CP-MIMS-LEI/CI for rapid and sensitive screening of bis(2-ethylhexyl) phthalate in house dust samples is presented. The detection limit in house dust (6 mg/kg) is comparable to that obtained by conventional analyses, but without time-consuming sample workup or chromatographic separation steps.
Collapse
Affiliation(s)
- Gregory W Vandergrift
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC Canada, V9R 5S5
- Chemistry Department, University of Victoria, Victoria, BC Canada, V8P 5C2
| | - William Lattanzio-Battle
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC Canada, V9R 5S5
| | - Erik T Krogh
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC Canada, V9R 5S5
- Chemistry Department, University of Victoria, Victoria, BC Canada, V8P 5C2
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC Canada, V9R 5S5
- Chemistry Department, University of Victoria, Victoria, BC Canada, V8P 5C2
- Chemistry Department, Simon Fraser University, Burnaby, BC Canada, V5A 1S6
- Environmental and Occupational Health Sciences Department, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Termopoli V, Torrisi E, Famiglini G, Palma P, Zappia G, Cappiello A, Vandergrift GW, Zvekic M, Krogh ET, Gill CG. Mass Spectrometry Based Approach for Organic Synthesis Monitoring. Anal Chem 2019; 91:11916-11922. [PMID: 31403767 DOI: 10.1021/acs.analchem.9b02681] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Current mass spectrometry-based methodologies for synthetic organic reaction monitoring largely use electrospray ionization (ESI), or other related atmospheric pressure ionization-based approaches. Monitoring of complex, heterogeneous systems may be problematic because of sampling hardware limitations, and many relevant analytes (neutrals) exhibit poor ESI performance. An alternative monitoring strategy addressing this significant impasse is condensed phase membrane introduction mass spectrometry using liquid electron ionization (CP-MIMS-LEI). In CP-MIMS, a semipermeable silicone membrane selects hydrophobic neutral analytes, rejecting particulates and charged chemical components. Analytes partition through the membrane, and are then transported to the LEI interface for sequential nebulization, vaporization, and ionization. CP-MIMS and LEI are both ideal for continuous monitoring applications of hydrophobic neutral molecules. We demonstrate quantitative reaction monitoring of harsh, complex reaction mixtures (alkaline, acidic, heterogeneous) in protic and aprotic organic solvents. Also presented are solvent-membrane compatibility investigations and, in situ quantitative monitoring of catalytic oxidation and alkylation reactions.
Collapse
Affiliation(s)
- Veronica Termopoli
- LC-MS Laboratory, Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino 61029 , Italy
| | - Elena Torrisi
- Biomolecular Sciences Department , University of Urbino Carlo Bo , Urbino 61029 , Italy
| | - Giorgio Famiglini
- LC-MS Laboratory, Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino 61029 , Italy
| | - Pierangela Palma
- LC-MS Laboratory, Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino 61029 , Italy.,Applied Environmental Research Laboratories (AERL), Chemistry Department , Vancouver Island University , Nanaimo , British Columbia V9R 5S5 , Canada
| | - Giovanni Zappia
- Biomolecular Sciences Department , University of Urbino Carlo Bo , Urbino 61029 , Italy
| | - Achille Cappiello
- LC-MS Laboratory, Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino 61029 , Italy.,Applied Environmental Research Laboratories (AERL), Chemistry Department , Vancouver Island University , Nanaimo , British Columbia V9R 5S5 , Canada
| | - Gregory W Vandergrift
- Applied Environmental Research Laboratories (AERL), Chemistry Department , Vancouver Island University , Nanaimo , British Columbia V9R 5S5 , Canada.,Chemistry Department , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Misha Zvekic
- Applied Environmental Research Laboratories (AERL), Chemistry Department , Vancouver Island University , Nanaimo , British Columbia V9R 5S5 , Canada
| | - Erik T Krogh
- Applied Environmental Research Laboratories (AERL), Chemistry Department , Vancouver Island University , Nanaimo , British Columbia V9R 5S5 , Canada.,Chemistry Department , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Chemistry Department , Vancouver Island University , Nanaimo , British Columbia V9R 5S5 , Canada.,Chemistry Department , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada.,Chemistry Department , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|