1
|
Lennon S, Hughes CJ, Muazzam A, Townsend PA, Gethings LA, Wilson ID, Plumb RS. High-Throughput Microbore Ultrahigh-Performance Liquid Chromatography-Ion Mobility-Enabled-Mass Spectrometry-Based Proteomics Methodology for the Exploratory Analysis of Serum Samples from Large Cohort Studies. J Proteome Res 2021; 20:1705-1715. [PMID: 33566619 DOI: 10.1021/acs.jproteome.0c00821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The deployment of proteomic analysis in clinical studies represents a significant opportunity to detect and validate biomarkers in translational medicine, improve disease understanding, and provide baseline information on population health. However, comprehensive proteome studies usually employ nanoscale chromatography and often require several hours of analysis/sample. Here, we describe a high-throughput liquid chromatography tandem mass spectrometry (LC/MS/MS) methodology using 1 mm scale chromatography requiring only 15 min/sample, coupled to ion mobility-enabled mass spectrometry. The short run time effected a 6-fold increase in productivity compared with nanoscale LC/MS. The method demonstrated excellent reproducibility with retention time coefficient of variations of less than 0.05% and peak area reproducibility ranging from 5 to 15%. The 1 mm system produced similar chromatographic peak capacity values to the nanoscale miniaturized system, detecting 90% of the Escherichia coli proteins identified by the 75 μm LC/MS system (albeit based on only 75% of the peptides found by the latter). Application to the analysis of serum samples from a human prostate cancer study group resulted in the identification of a total of 533 proteins revealing the differential expression of proteins linked to patients receiving hormone-radiotherapy or undergoing surgery.
Collapse
Affiliation(s)
- Sarah Lennon
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K
| | | | - Ammara Muazzam
- Division of Cancer Sciences, Oglesby Cancer Research Building, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, U.K
| | - Paul A Townsend
- Division of Cancer Sciences, Oglesby Cancer Research Building, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, U.K.,Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, U.K
| | - Lee A Gethings
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K.,Manchester Institute of Biotechnology, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M1 7DN, U.K
| | - Ian D Wilson
- Department of Metabolism, Digestion and Reproduction, Imperial College, South Kensington, London SW7 2AZ, U.K
| | - Robert S Plumb
- Scientific Operations, Waters Corporation, Milford, Massachusetts 01757, United States
| |
Collapse
|
2
|
Liu FC, Cropley TC, Ridgeway ME, Park MA, Bleiholder C. Structural Analysis of the Glycoprotein Complex Avidin by Tandem-Trapped Ion Mobility Spectrometry-Mass Spectrometry (Tandem-TIMS/MS). Anal Chem 2020; 92:4459-4467. [PMID: 32083467 DOI: 10.1021/acs.analchem.9b05481] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycoproteins play a central role in many biological processes including disease mechanisms. Nevertheless, because glycoproteins are heterogeneous entities, it remains unclear how glycosylation modulates the protein structure and function. Here, we assess the ability of tandem-trapped ion mobility spectrometry-mass spectrometry (tandem-TIMS/MS) to characterize the structure and sequence of the homotetrameric glycoprotein avidin. We show that (1) tandem-TIMS/MS retains native-like avidin tetramers with deeply buried solvent particles; (2) applying high activation voltages in the interface of tandem-TIMS results in collision-induced dissociation (CID) of avidin tetramers into compact monomers, dimers, and trimers with cross sections consistent with X-ray structures and reports from surface-induced dissociation (SID); (3) avidin oligomers are best described as heterogeneous ensembles with (essentially) random combinations of monomer glycoforms; (4) native top-down sequence analysis of the avidin tetramer is possible by CID in tandem-TIMS. Overall, our results demonstrate that tandem-TIMS/MS has the potential to correlate individual proteoforms to variations in protein structure.
Collapse
Affiliation(s)
- Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Tyler C Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Mark E Ridgeway
- Bruker Daltonics Inc., 40 Manning Road, Billerica, Massachusetts 01821, United States
| | - Melvin A Park
- Bruker Daltonics Inc., 40 Manning Road, Billerica, Massachusetts 01821, United States
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|