1
|
Wang J, Guo L, Xu X, Kuang H, Liu L, Xu C, Sun M. Development of a lateral flow immunoassay for the rapid detection of diclofenac in milk and milk tea. Food Chem 2025; 473:143031. [PMID: 39892341 DOI: 10.1016/j.foodchem.2025.143031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Diclofenac (DCF) is widely used in veterinary medicine, but its milk residues may pose risks to human health. This study designed DCF haptens using computer modeling and developed an anti-DCF monoclonal antibody (mAb) with milk samples, achieving a semi-inhibitory concentration of 0.379 ng/mL. A lateral flow immunoassay (LFIA) was created to detect DCF residues in milk and milk tea, with calculated limits of detection (cLOD) of 0.083 ng/mL for milk and 0.055 ng/mL for milk tea. The results obtained from the LFIA assay for real samples, as well as the recovery rates, were consistent with those obtained from instrumental methods. Notably, the LOD for milk using this method was at least one order of magnitude higher than that of other methods. The method shows promise for detecting DCF in real milk and milk tea.
Collapse
Affiliation(s)
- Jiarui Wang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
2
|
Hu G, Yu Q, Zhang Y, Zheng X, Gao S, Hao J. Development of two novel ELISAs based on Prussian blue nanoparticles for ultrasensitive detection of norfloxacin in milk. Food Chem 2025; 463:141206. [PMID: 39288459 DOI: 10.1016/j.foodchem.2024.141206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
The development of traditional enzyme-linked immunosorbent assay (ELISA) systems for the detection of small-molecule residues in foods is limited because of the poor stability of biological enzymes and the lower sensitivity of absorption-based signals. Herein, two ELISAs based on Prussian blue nanoparticles (PBNPs) were developed to establish ultrasensitive and stable methods for detecting norfloxacin (NOR) in milk. The results show that the detection limit (IC15) of NOR was 0.77 μg L-1 and the sensitivity (IC50) was 18.28 μg L-1 in the standard solution using the PBNPs-based nano-ELISA. When the fluorescence quenching ELISA based on PBNPs was used, the detection limit was 0.06 μg L-1 and the sensitivity was 4.21 μg L-1 in the standard solution. The recoveries and precision were good, as confirmed by analysis of real milk samples. The results were consistent with those of commercial ELISA kits, indicating the high accuracy of these two methods.
Collapse
Affiliation(s)
- Gaoshuang Hu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Qingxiu Yu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Yiqin Zhang
- Shijiazhuang Customs District P. R. China, Shijiazhuang, Hebei 050061, PR China
| | - Xuechao Zheng
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Shan Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China.
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China.
| |
Collapse
|
3
|
Li N, Liang M, Zhang H, Hua Z, Ma L, Qi Y, Wang K. Effective extraction and determination of 24 quinolones in water and egg samples using a novel magnetic covalent organic framework combined with UPLC-MS/MS. RSC Adv 2024; 14:8303-8312. [PMID: 38487520 PMCID: PMC10938296 DOI: 10.1039/d4ra00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
The excessive use of quinolones (QNs) has seriously threatened human health. In this study, a novel functionalized magnetic covalent organic framework Fe3O4@SiO2@Ah-COF was fabricated with biphenyl-3,3',5,5'-tetracarbaldehyde and hydrazine hydrate (85%) as monomers and was used as a magnetic solid-phase extraction (MSPE) absorbent for the determination of 24 QNs in water and egg samples through ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The extraction parameters of MSPE were optimized, including pH, adsorbent dosage, adsorption time, and eluent type. An effective and rapid detection method was then established, which showed good linearity (R2 ≥ 0.9990), low limits of detection (0.003-0.036 μg L-1) and low limits of quantitation (0.008-0.110 μg L-1) for QNs. The good recoveries of 24 QNs in water and egg samples were in the range of 70.3-106.1% and 70.4-119.7%, respectively, with relative standard deviations lower than 10% (n = 5). As a result, Fe3O4@SiO2@Ah-COF is a promising magnetic adsorbent, and the established method was successfully applied for the determination of 24 QNs in water and egg samples.
Collapse
Affiliation(s)
- Na Li
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Mengnan Liang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Hao Zhang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Zhongxia Hua
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Ling Ma
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Yanyu Qi
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Ke Wang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| |
Collapse
|
4
|
Li XH, Cui YY, Wu X, Abdukayum A, Yang CX. Fabrication of zwitterionic magnetic microporous organic network for efficient extraction of fluoroquinolone antibiotics from meat samples. Food Chem 2023; 429:136808. [PMID: 37459710 DOI: 10.1016/j.foodchem.2023.136808] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
A zwitterionic magnetic microporous organic network (MMON-SO3H-NH2) with numerous amino and sulfonic acid ion-pare binding sites was designed and synthesized for efficient magnetic solid-phase extraction (MSPE) of fluoroquinolones (FQs) from meat samples. The core-shell MMON-SO3H-NH2 offered large specific surface area, rapid magnetic responsiveness, good stability, and multiple binding sites for FQs. The density functional theory and independent gradient model evaluations confirmed hydrogen bonding, π-π and ion-pair interactions between MMON-SO3H-NH2 and FQs. Under the optimal conditions, the established MMON-SO3H-NH2-MSPE-HPLC-UV method gave wide linear range (0.15-1000 μg L-1), low limits of detection (0.05-4.5 μg L-1) and limits of quantitation (0.15-13 μg L-1), and high enrichment factors (82.1-99.6) using 3 mg of adsorbent. This work demonstrates that the preparation of zwitterionic MONs is an efficient way to promote the extraction performance of MONs for zwitterionic targets and provides an effective sample pretreatment method for enriching and monitoring FQs in complex food matrices.
Collapse
Affiliation(s)
- Xu-Hui Li
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xun Wu
- Hangzhou Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, China
| | - Abdukader Abdukayum
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
5
|
Li P, Bai J, He P, Zeng J. One Pot Synthesis of Nanofiber-Coated Magnetic Composites as Magnetic Dispersive Solid-Phase Extraction Adsorbents for Rapid Determination of Tetracyclines in Aquatic Food Products. Molecules 2023; 28:7421. [PMID: 37959840 PMCID: PMC10647669 DOI: 10.3390/molecules28217421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
A magnetic adsorbent based on a C-nanofiber (Fe3O4@C-NFs) nanocomposite was synthesized using a simple one-pot co-precipitation method. The characterized results showed that the obtained C-nanofiber-coated magnetic nanoparticles had many attractive features such as a large specific surface area and a highly interwoven and branched mesoporous structure, as well as distinguished magnetism. The nanocomposite was then used as an adsorbent in the magnetic solid phase extraction (MSPE) of four typical tetracyclines (oxytetracycline, tetracycline, chlortetracycline, and doxycycline) in aquatic products. The TCs in the extract were determined using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Experimental variables of MSPE, including the sorbent amount, pH condition, adsorption and desorption time, and desorption solvent, were investigated and optimized systematically. The method validation indicated that the developed method showed good linearity (R2 > 0.995) in the range of 1.0-200 ng/mL. The average recoveries at the spiked levels ranged from 90.7% to 102.7% with intra-day and inter-day relative standard deviations (RSDs, n = 6) ranging from 3.72% to 8.17% and 4.20% to 9.69%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for the four kinds of TCs were 0.7 μg/kg and 2.0 μg/kg, respectively. Finally, MSPE based on C-nanofiber-coated magnetic nanoparticles was successfully applied to TC analysis in real aquatic products (grass carp, large yellow croaker, snakehead, mandarin fish, Penaeus vannamei, swimming crab, etc.). Compared with traditional extraction methods, the proposed method for TC analysis in aquatic products is more sensitive, effective, recyclable, and environmentally friendly.
Collapse
Affiliation(s)
- Peipei Li
- Zhejiang Marine Fisheries Research Institute, Tiyu Road 28, Zhoushan 316021, China
| | - Junlu Bai
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, China
| | - Pengfei He
- Zhejiang Marine Fisheries Research Institute, Tiyu Road 28, Zhoushan 316021, China
| | - Junjie Zeng
- Zhejiang Marine Fisheries Research Institute, Tiyu Road 28, Zhoushan 316021, China
| |
Collapse
|
6
|
Lin S, Liang B, Zhao Z, Li Z, Deng K, He H, Liang SX. Fabrication of a magnetic metal-organic framework/covalent organic framework composite for simultaneous magnetic solid-phase extraction of seventeen trace quinolones residues in meats. J Chromatogr A 2023; 1709:464403. [PMID: 37757609 DOI: 10.1016/j.chroma.2023.464403] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Effective capture of quinolones (QNs) in animal-derived food is a vital procedure for food safety monitoring. However, the lack of adsorption specificity and difficult to recycle in complex substrate conditions have been major problems for most of the adsorbents. In this work, a magnetic Fe3O4/MOF/COF composite (named Fe3O4@NH2-MIL-125@TpPa-SO3H) was successfully synthesized with good magnetic responsiveness and conspicuous affinity towards QNs. The Fe3O4/MOF/COF composite was used as a magnetic solid-phase extraction (MSPE) adsorbent for pretreatment and determination of QNs in meat samples. Under optimal MSPE conditions in combination with high performance liquid chromatography-quadrupole orbitrap high resolution mass spectrometer (HPLC-Q-Orbitrap HRMS), the proposed method had good linearity (R2 ≥ 0.9978) from 0.01 to 100ng g-1, low limits of detection (0.0016 to 0.0940ng g-1), good precision with relative standard deviations lower than 5.8%. This method was effectively applied to the detection of 17 QNs in the spiked pork, chicken and beef samples with satisfactory recoveries from 83.9 to 106.2%. The separation selectivity mainly due to the π-π interaction, hydrogen bonding, and electrostatic attraction between QNs and the sulfonic acid and amino functional groups of the composite. After verification, the stability and reusability of the composite meet the requirements of complex matrix sample pretreatment. The developed MSPE method based on the magnetic Fe3O4/MOF/COF composite provided an ideal sample pretreatment alternative for determining trace QNs in complex matrixes with selectivity, simplicity, rapidity, and efficiency.
Collapse
Affiliation(s)
- Shumin Lin
- Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China; Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Bolong Liang
- School of Eco-Environment, Hebei University, Baoding 071002, PR China
| | - Zhe Zhao
- Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Zhenqiu Li
- College of Life Science, Hebei University, Baoding 071002, PR China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Kai Deng
- College of Life Science, Hebei University, Baoding 071002, PR China
| | - Hongbin He
- School of Eco-Environment, Hebei University, Baoding 071002, PR China
| | - Shu-Xuan Liang
- Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
7
|
Khongkla S, Nurerk P, Udomsri P, Jullakan S, Bunkoed O. A monolith graphene oxide and mesoporous carbon composite sorbent in polyvinyl alcohol cryogel to extract and enrich fluoroquinolones in honey. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Wang J, Feng J, Sun M, Lian Y, Wang M, Qiao L. Sulfonic acid-functionalized covalent organic frameworks as the coating for stir bar sorptive extraction of fluoroquinolones in milk samples. Mikrochim Acta 2022; 190:5. [PMID: 36469152 DOI: 10.1007/s00604-022-05534-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022]
Abstract
Sulfonic acid-functionalized covalent organic frameworks (COF-SO3) as a coating of stir bar sorptive extraction (SBSE) for capturing three fluoroquinolones from milk have been developed. The COF-SO3 material was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy. Milk without any typical treatments like protein precipitation and defatting was only diluted five times with water for test. Combined with high-performance liquid chromatography (HPLC), a SBSE-HPLC method was established for detecting fluoroquinolones in milk samples. The corresponding wide linear ranges (4.00-500.0 µg L-1), low detection limits (1.20-2.62 µg L-1), good test repeatability (RSD < 5.2%), and acceptable enrichment factors (56.2-61.5) were implemented for three fluoroquinolones. The analytical method was applied to determine trace targets and provided satisfactory results. Furthermore, the research displayed satisfied reproducibility for bar-to-bar (RSD < 6.5%) and batch-to-batch (RSD < 8.6%) tests.
Collapse
Affiliation(s)
- Jiarui Wang
- College of Food Science and Engineering, College of Plant Protection, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Yujing Lian
- College of Food Science and Engineering, College of Plant Protection, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Minglin Wang
- College of Food Science and Engineering, College of Plant Protection, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Luqin Qiao
- College of Food Science and Engineering, College of Plant Protection, Shandong Agricultural University, Taian, 271018, People's Republic of China.
| |
Collapse
|
9
|
Kalita S, Das DK. Rosaniline Hydrochloride Encapsulated MCM-48: Fluorescent and Electrochemical Sensor for Dopamine. J Fluoresc 2021; 32:235-245. [PMID: 34713364 DOI: 10.1007/s10895-021-02840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
The dye Rosaniline hydrochloride (RANH) has been successfully incorporated in MCM-48 (designated as RANH@MCM-48) and characterized by various spectroscopic methods including FT-IR, SEM, EDX and N2 adsorption-desorption isotherm. RANH@MCM-48 in aqueous medium acts as fluorescence "on" sensor for neurotransmitter dopamine (DA) in presence of its main biological interfering agent ascorbic acid or vitamin c (AA) along with Glucose, Cholesterol and Uric acid (UA). The limits of detection (LOD) were found to be 65 nM and 51 nM respectively in absence and in presence of AA. The interaction of DA to RANH@MCM-48 is found to be reversible with respect to EDTA2-. The fluorescence intensity vs. pH plot shows a narrow fluorescence window of 7.2 to 8.8. RANH@MCM-48 has been successfully applied for DA detection in artificial cerebrospinal fluid (ACF) and bovine serum albumin (BSA) with LOD values 27 nM and 22.5 nM respectively. Platinum disc electrode has been modified with RANH@MCM-48 which showed distinct oxidation peaks with a separation of 0.188 V in cyclic voltammetry (CV). The LOD for DA in presence of AA determined from oxidation current is 77.5 nM. The voltammetric detection of DA is found to be free from common interfering species Na+, K+, Ca2+, Fe2+, UA, Cholesterol and Glucose. RANH@MCM-48 has been found to be a very effective fluorescence and voltammetric sensor for DA with very low LOD.
Collapse
Affiliation(s)
- Sarojmoni Kalita
- Department of Chemistry, Gauhati University, Guwahati, 781 014, India
| | - Diganta Kumar Das
- Department of Chemistry, Gauhati University, Guwahati, 781 014, India.
| |
Collapse
|
10
|
Synthesis of molecularly imprinted polymers for extraction of fluoroquinolones in environmental, food and biological samples. J Pharm Biomed Anal 2021; 208:114447. [PMID: 34740088 DOI: 10.1016/j.jpba.2021.114447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
In recent years, fluoroquinolones have been found present in important water resources and food sources which compromises the food quality and availability, thereby, causing risks to the consumer. Despite the recent advancement in the development of analytical instrumentation for routine monitoring of fluoroquinolones in water, food, and biological samples, sample pre-treatment is still a major bottleneck of the analytical methods. Therefore, fast, selective, sensitive, and cost-effective sample preparation methods prior to instrumental analysis for fluoroquinolones residues in environmental, food and biological samples are increasingly important. Solid-phase extraction using different adsorbents is one of the most widely used pre-concentration/clean-up techniques for analysis of fluoroquinolones. Molecularly imprinted polymers (MIPs) serve as excellent effective adsorbent materials for selective extraction, separation, clean-up and preconcentration of various pollutants in different complex matrices. Therefore, synthesis of MIPs remains crucial for their applications in sample preparation as this offers much-needed selectivity in the extraction of compounds in complex samples. In this study, the progress made in the synthesis of MIPs for fluoroquinolones and their applications in water, food and biological samples were reviewed. The present review discusses the selection of all the elements of molecular imprinting for fluoroquinolones, polymerization processes and molecular recognition mechanisms. In conclusion, the related challenges and gaps are given to offer ideas for future research focussing on MIPs for fluoroquinolones.
Collapse
|
11
|
Abstract
Antibiotics, nowadays, are not only used for the treatment of human diseases but also used in animal and poultry farming to increase production. Overuse of antibiotics leads to their circulation in the food chain due to unmanaged discharge. These circulating antibiotics and their residues are a major cause of antimicrobial resistance (AMR), so comprehensive and multifaceted measures aligning with the One Health approach are crucial to curb the emergence and dissemination of antibiotic resistance through the food chain. Different chromatographic techniques and capillary electrophoresis (CE) are being widely used for the separation and detection of antibiotics and their residues from food samples. However, the matrix present in food samples interferes with the proper detection of the antibiotics, which are present in trace concentrations. This review is focused on the scientific literature published in the last decade devoted to the detection of antibiotics in food products. Various extraction methods are employed for the enrichment of antibiotics from a wide variety of food samples; however, solid-phase extraction (SPE) techniques are often used for the extraction of antibiotics from food products and biological samples. In addition, this review has scrutinized how changing instrumental composition, organization, and working parameters in the chromatography and CE can greatly impact the identification and quantification of antibiotic residues. This review also summarized recent advancements in other detection methods such as immunological assays, surface-enhanced Raman spectroscopy (SERS)-based assays, and biosensors which have emerged as rapid, sensitive, and selective tools for accurate detection and quantification of traces of antibiotics.
Collapse
|
12
|
Ma W, Row KH. Hydrophilic deep eutectic solvents modified phenolic resin as tailored adsorbent for the extraction and determination of levofloxacin and ciprofloxacin from milk. Anal Bioanal Chem 2021; 413:4329-4339. [PMID: 34041574 DOI: 10.1007/s00216-021-03389-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
A reliable and efficient method for the simultaneous extraction and determination of antibiotics of ciprofloxacin and levofloxacin from milk was developed with solid phase extraction based on tailored adsorbent materials of deep eutectic solvents modified phenolic resin (DES-R-SPE). Six types of polyhydric alcohol-based hydrophilic DESs were prepared to modify the phenolic resin with the compositions of 3-aminophenol as a functional monomer, glyoxylic acid as a crosslinker, and polyethylene glycol 6000 as a porogen. And the prepared DES-Rs showed better extraction capacities for the target analytes than the unmodified phenolic resin because of more hydrogen bonding and electrostatic interactions supplied by DESs. The choline chloride-glycerol-based resin (DES1-R) with the highest adsorption amounts was selected and the adsorption behavior of it was studied with static adsorption and the dynamic adsorption performance; the adsorption process followed Freundlich isotherm (R2 ≥ 0.9337) and pseudo-second-order (R2 ≥ 0.9951). The present DES1-R-SPE method showed good linear range from 0.5 to100 μg mL-1 (R2 ≥ 0.9998), good recoveries of spiked milk samples (LEV, 96.7%; CIP, 101.5%), and satisfied repeatability for intra-day and inter-day (LEV, RSD≤5.4%; CIP, RSD≤4.6%).
Collapse
Affiliation(s)
- Wanwan Ma
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-701, South Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-701, South Korea.
| |
Collapse
|
13
|
Xiao X, Hu S, Lai X, Peng J, Lai W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Li F, Wang M, Zhou J, Yang M, Wang T. Cyclodextrin-derivatized hybrid nanocomposites as novel magnetic solid-phase extraction adsorbent for preconcentration of trace fluoroquinolones from water samples coupled with HPLC-MS/MS determination. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Polyethyleneimine-functionalized Fe 3O 4/attapulgite particles for hydrophilic interaction-based magnetic dispersive solid-phase extraction of fluoroquinolones in chicken muscle. Anal Bioanal Chem 2021; 413:3529-3540. [PMID: 33813591 DOI: 10.1007/s00216-021-03304-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Fluoroquinolone (FQ) residues in foods of animal origin may threaten public health but are challenging to determine because of their low contents and complex matrices. In this study, novel polyethyleneimine-functionalized Fe3O4/attapulgite magnetic particles were prepared by a simple co-mixing method and applied as hydrophilic sorbents for the magnetic dispersive solid-phase extraction (MSPE) of three FQs, i.e., ciprofloxacin, norfloxacin, and enrofloxacin, from chicken muscle samples. The preparation of the magnetic particles was of high reproducibility and the products could be reused many times with high adsorption capacity. The key experimental factors possibly influencing the extraction efficiencies, including sample solution, extraction time, sample loading volume, desorption solution, desorption time, and elution volume were investigated. Under optimum MSPE conditions, the analytes in chicken muscle samples were extracted and then determined by RPLC-MS/MS in MRM mode. Good linearity was obtained for the analytes with correlation coefficients ranged from 0.9975 to 0.9995. The limits of detection were in the range of 0.02-0.08 μg kg-1, and the recoveries of the spiked FQs in chicken muscle samples ranged from 83.9 to 98.7% with relative standard deviations of 1.3-6.8% (n = 3). Compared with the traditional MSPE methods based on hydrophobic mechanism, this hydrophilic interaction-based method significantly simplifies the sample pretreatment procedure and improves repeatability. This method is promising for accurate monitoring of FQs in foods of animal origin.
Collapse
|
16
|
Moga A, Vergara-Barberán M, Lerma-García MJ, Carrasco-Correa EJ, Herrero-Martínez JM, Simó-Alfonso EF. Determination of antibiotics in meat samples using analytical methodologies: A review. Compr Rev Food Sci Food Saf 2021; 20:1681-1716. [PMID: 33522137 DOI: 10.1111/1541-4337.12702] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
Antibiotics are widely used to prevent or treat some diseases in human and veterinary medicine and also as animal growth promoters. The presence of these compounds in foods derived from food-producing animals can be a risk for human health. Consequently, regulatory agencies have set maximum residue limits for antibiotics in food samples. Therefore, the development of novel methodologies for its determination in food samples is required. Specifically, the analysis and quantification of these substances in meat tissues is a challenge for the analytical chemistry research community. This is due to the complexity of the matrix and the low detection limits required by the regulatory agencies. In this sense, a comprehensive review on the development of new sample preparation treatments involving extraction, cleanup, and enrichment steps of antibiotics in meat samples in combination with sensitive and sophisticated determination techniques that have been carry out in the last years is necessary. Therefore, the aim of this work is to summarize the published methodologies for the determination of antibiotics from 2016 until the beginning of the second semester of 2020. The first part of this review includes an introduction about antibiotic families, followed by sample preparation and determination techniques applied to the different families. Finally, a detailed discussion of the current trends and the future possible perspectives in this field are also included.
Collapse
Affiliation(s)
- Ancuta Moga
- Department of Analytical Chemistry, Burjassot, University of Valencia, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Hu K, Shi Y, Zhu W, Cai J, Zhao W, Zeng H, Zhang Z, Zhang S. Facile synthesis of magnetic sulfonated covalent organic framework composites for simultaneous dispersive solid-phase extraction and determination of β-agonists and fluoroquinolones in food samples. Food Chem 2020; 339:128079. [PMID: 33152872 DOI: 10.1016/j.foodchem.2020.128079] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
In this work, an efficient method for the determination of β-agonists and fluoroquinolones was established, based on a mixed-mode sorbent of magnetic sulfonated covalent organic framework composites. By coupling with HPLC-MS/MS, the main factors that affect the extraction procedure were optimized. Under the optimal conditions, the proposed HPLC-MS/MS method was successfully utilized for the extraction of β-agonists and fluoroquinolones in milk and pork meat samples. The method showed good linearities (R2 ≥ 0.9916), and low LOQs of 0.1-0.2 ng g-1 for β-agonists and fluoroquinolones. The adsorption mechanism was investigated with the assistance of quantum chemistry calculation method, and it is worth noting that the sorbent relied mainly on the multiple adsorption mechanisms, including π-π stacking, hydrophobic, electrostatic attraction and hydrogen-bonding interactions. This work not only provides a simple method for the preparation of a mixed-mode sorbent, but also a routine analysis strategy for monitoring the illegal use of β-agonists and fluoroquinolones.
Collapse
Affiliation(s)
- Kai Hu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Yanmei Shi
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weixia Zhu
- Zhengzhou Customs District, Zhengzhou 450003, China
| | - Junlan Cai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Wenjie Zhao
- School of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Huahui Zeng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Shusheng Zhang
- Center of Advanced Analysis and Computational Science, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Yang H, Li L, Cao H, Zhang Z, Zhao T, Hao Y, Wang M. Silica supported metal organic framework 808 composites as adsorbent for solid-phase extraction of benzodiazepines in urine sample. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Khatibi SA, Hamidi S, Siahi-Shadbad MR. Current trends in sample preparation by solid-phase extraction techniques for the determination of antibiotic residues in foodstuffs: a review. Crit Rev Food Sci Nutr 2020; 61:3361-3382. [DOI: 10.1080/10408398.2020.1798349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Seyed Amin Khatibi
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Reza Siahi-Shadbad
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Faculty of Pharmacy, Department of Pharmaceutical and Food Control, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
20
|
Villa CC, Galus S, Nowacka M, Magri A, Petriccione M, Gutiérrez TJ. Molecular sieves for food applications: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Sulphonate functionalized covalent organic framework-based magnetic sorbent for effective solid phase extraction and determination of fluoroquinolones. J Chromatogr A 2020; 1612:460651. [DOI: 10.1016/j.chroma.2019.460651] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022]
|
22
|
Yu M, Wang L, Hu L, Li Y, Luo D, Mei S. Recent applications of magnetic composites as extraction adsorbents for determination of environmental pollutants. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|