1
|
Zhou H, Xu F, Wei L, Lin J, Zhao C, Mei H, Shan Q, Wang Q, Mu Y, Yin Y. Determination of diazepam and its active metabolites in aquatic products and aquaculture environments using modified QuEChERS-based UPLC-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2806-2816. [PMID: 40104882 DOI: 10.1039/d4ay02144d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In recent years, the residue of psychotropic drugs such as diazepam in aquatic products has attracted widespread attention and is one of the important hidden dangers to the quality and safety of agricultural products. This study developed a modified QuEChERS method combined with UPLC-MS/MS to determine the residues of diazepam and its active metabolites, nordiazepam, oxazepam, and temazepam, in aquatic products and aquaculture environments. The important variables of the QuEChERS procedure were screened and optimized through single-factor experiments and response surface methodology. The recoveries of analytes in five aquatic products, pond water, and sediment were 87.4-97.8%, 90.4-96.4%, and 85.2-94.7%, respectively, with relative standard deviations of less than 15%. The limits of quantification were 0.1 μg kg-1 for the four analytes in aquatic products and sediments, and 5 ng L-1 in pond water. This method has been successfully applied to the analysis of diazepam and its active metabolite residues in 28 freshwater aquaculture farms in South China. The detected concentrations of the four analytes in aquatic products, sediments and pond water were 0.18-3.03 μg kg-1, 0.21-17.5 μg kg-1 and 5.56-391 ng L-1, respectively. The illegal abuse of diazepam in fishing bait may be an important source of pollution in aquatic products. The risk assessment results showed that the residues of diazepam in aquaculture posed an acceptable risk to human health and a medium risk to the ecosystem. These results confirmed that the established method is suitable for the simultaneous analysis of diazepam and its active metabolites in aquatic products and aquaculture environments.
Collapse
Affiliation(s)
- Hao Zhou
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| | - Feng Xu
- Chongqing Fisheries Technical Extension Center, Chongqing, 400000, China
| | - Linting Wei
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| | - Jiawei Lin
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| | - Cheng Zhao
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| | - Huiqing Mei
- Chongqing Fisheries Technical Extension Center, Chongqing, 400000, China
| | - Qi Shan
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| | - Qing Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| | - Yingchun Mu
- Chinese Academy of Fishery Sciences, Beijing, 100000, China
| | - Yi Yin
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Yang SL, Liu WS, Li G, Bu R, Li P, Gao EQ. A pH-Sensing Fluorescent Metal-Organic Framework: pH-Triggered Fluorescence Transition and Detection of Mycotoxin. Inorg Chem 2020; 59:15421-15429. [PMID: 33022178 DOI: 10.1021/acs.inorgchem.0c02419] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to its great relevance to environmental, biological, and chemical processes, the precise detection of pH or acidic/basic species is an ongoing and imperative need. In this context, pH-sensitive luminescent systems are highly desired. We reported a three-dimensional Zn(II) MOF synthesized from a bipyridyl-tetracarboxylic ligand and composed of 4-fold interpenetrated diamond frameworks. Because the steric hindrance in the ligand prevents metal coordination with the pyridyl group, the MOF features free basic N sites accessible to the small H+ ions, which renders pH responsivity. The aqueous dispersion exhibits an abrupt, high-contrast, and reversible on-off fluorescence transition in the narrow pH range of 5.4-6.2. The sensitive bistable system can be used for the precise monitoring of pH within the range and for use as a pH-triggered optical switch. The responsive mechanism through pyridyl protonation is collaboratively supported by data fitting, absorption spectra, and molecular orbital calculations. In particular, spectral and theoretical analyses reveal the destruction of n → π* transitions and the appearance of intramolecular charge-transfer transitions upon pyridyl protonation. Moreover, by virtue of the pH-responsive fluorescence, the MOF shows appealing sensing performance for the detection of 3-nitropropionic acid, a major mycotoxin in moldy sugar cane.
Collapse
Affiliation(s)
- Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wan-Shan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Peng Li
- College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|