1
|
Zhu W, Zhao S, Yu B, Tao Y, Wang C, Shi L, Zhang X, Meng J, Wu C, Ding C, Yu L. Squaraine dye as a fluorescent probe for highly sensitive detection of pyrophosphate and alkaline phosphatase. ANAL SCI 2025; 41:289-296. [PMID: 39724287 DOI: 10.1007/s44211-024-00697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
We synthesized a squaraine dye (F-0) to develop a method for detecting pyrophosphate (PPi) and alkaline phosphatase (ALP) by modulating the fluorescence of F-0. The fluorescence intensity of the F-0 system was quenched upon the addition of Cu2+ ions; however, it was restored when PPi was introduced due to the formation of a complex between PPi and Cu2+. Since ALP can hydrolyze PPi, the fluorescence of the system was quenched again upon the addition of ALP. Based on these principles, we established a fluorescent probe that exhibits an "off-on-off" fluorescence response. The detection limits of this method for PPi and ALP were 103 nmol dm-3 and 0.18 U dm-3, respectively. Moreover, this method demonstrates good selectivity and specificity and can be applied to the detection of PPi in actual samples.
Collapse
Affiliation(s)
- Wenxuan Zhu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China
| | - Shuhua Zhao
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China
- North China University of Science and Technology, Tangshan, 063210, China
| | - Bei Yu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China
| | - Yucun Tao
- School of Public Health, Shantou University, Shantou, 515041, China
| | - Chaoyang Wang
- The Key Medical Laboratory for Chemical Poison Detection of Henan Province, The Third People's Hospital of Henan Province, Zhengzhou, China
| | - Lei Shi
- North China University of Science and Technology, Tangshan, 063210, China
| | - Xiufeng Zhang
- North China University of Science and Technology, Tangshan, 063210, China
| | - Jing Meng
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China
| | - Chengqiu Wu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Chunguang Ding
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China.
| | - Lijia Yu
- NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China.
| |
Collapse
|
2
|
Chen Y, Han JJ, Li BW, Nie LB, Tang Y, Wang T. A Ratiometric Fluorescence Biosensor for Detection of Alkaline Phosphatase Via an Advanced Chemometric Model. J Fluoresc 2024; 34:2655-2664. [PMID: 37870733 DOI: 10.1007/s10895-023-03445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
In this paper, a ratiometric fluorescence biosensor was introduced for alkaline phosphatase (ALP) detection based on 2-aminopurine (2-Amp) and thioflavin T (ThT)-G-quadruplex system. We designed a special DNA (5'-AGGGTTAGGGTTAGGGTTAGGGAAA/i2-Amp/AAAA-PO4-3', AP) modified with a phosphate moiety at the 3'-end, G-quadruplex at the 5'-end, and a fluorophore (2-Amp) in the middle. In the absence of ALP, the G-rich AP strand could be prone to fold into G-quadruplex structures in the presence of K+. Then, ThT combined with G-quandruplex, resulting in the enhancement of fluorescence emission peak at 485 nm. However, ALP-mediated hydrolysis of the 3'-phosphoryl end promoted the cleavage of AP by the exonuclease I (Exo I), releasing 2-Amp which displayed a strong fluorescence emission peak at 365 nm. Moreover, the quantitative fluorescence model (QFM) was derived for the analysis of the fluorescence measurements obtained by the proposed ratiometric fluorescent biosensor. With the aid of the advanced model, the proposed ratiometric fluorescent biosensor possessed satisfactory results for the detection of ALP in the human serum samples, with accuracy comparable to that of the reference method-the commercial ALP assay kit. Under the optimized experimental conditions, this method exhibited good selectivity and higher sensitivity, and the detection limit was found to be as low as 0.017 U/L. Therefore, it is reasonable to expect that the method had a great potential to detect ALP quantitatively in clinical diagnosis.
Collapse
Affiliation(s)
- Yao Chen
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jing-Jing Han
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, PR China
| | - Bo-Wen Li
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, PR China
| | - Li-Bo Nie
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, PR China
| | - Ying Tang
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, PR China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Tong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
3
|
Wang X, Ding Q, Groleau RR, Wu L, Mao Y, Che F, Kotova O, Scanlan EM, Lewis SE, Li P, Tang B, James TD, Gunnlaugsson T. Fluorescent Probes for Disease Diagnosis. Chem Rev 2024; 124:7106-7164. [PMID: 38760012 PMCID: PMC11177268 DOI: 10.1021/acs.chemrev.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Xin Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qi Ding
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | | | - Luling Wu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Yuantao Mao
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Feida Che
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Oxana Kotova
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
| | - Eoin M. Scanlan
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Ping Li
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
- Laoshan
Laboratory, 168 Wenhai
Middle Road, Aoshanwei Jimo, Qingdao 266237, Shandong, People’s Republic of China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, People’s
Republic of China
| | - Thorfinnur Gunnlaugsson
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| |
Collapse
|
4
|
Zarei A, Rezaei A, Shahlaei M, Asani Z, Ramazani A, Wang C. Selective and sensitive CQD-based sensing platform for Cu 2+ detection in Wilson's disease. Sci Rep 2024; 14:13183. [PMID: 38851799 PMCID: PMC11162432 DOI: 10.1038/s41598-024-63771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
Excessive Cu2+ intake can cause neurological disorders (e.g. Wilson's disease) and adversely affect the gastrointestinal, liver, and kidney organs. The presence of Cu2+ is strongly linked to the emergence and progression of Wilson's disease (WD), and accurately measuring the amount of copper is a crucial step in diagnosing WD at an early stage in a clinical setting. In this work, CQDs were fabricated through a facile technique as a novel fluorescence-based sensing platform for detecting Cu(II) in aqueous solutions, and in the serum samples of healthy and affected individuals by WD. The CQDs interact with Cu(II) ions to produce Turn-on and Turn-off states at nano-molar and micro-molar levels, respectively, with LODs of 0.001 µM and 1 µM. In fact, the Cu2+ ions can act like a bridge between two CQDs by which the charge and electron transfer between the CQDs may increase, possibly can have significant effects on the spectroscopic features of the CQDs. To the best of our knowledge, this is the first reported research that can detect Cu(II) at low levels using two different complexation states, with promising results in testing serum. The potential of the sensor to detect Cu(II) was tested on serum samples from healthy and affected individuals by WD, and compared to results obtained by ICP-OES. Astonishingly, the results showed an excellent correlation between the measured Cu(II) levels using the proposed technique and ICP-OES, indicating the high potential of the fluorimetric CQD-based probe for Cu(II) detection. The accuracy, sensitivity, selectivity, high precision, accuracy, and applicability of the probe toward Cu(II) ions make it a potential diagnostic tool for Wilson's disease in a clinical setting.
Collapse
Affiliation(s)
- Armin Zarei
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhaleh Asani
- Students Research Committee,, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran.
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
5
|
Kumar A, Upadhyay Y, Bera RK, Sahoo SK. Fluorescent Turn-On Sensing of Zinc(II) and Alkaline Phosphatase Activity Using a Pyridoxal-5'-Phosphate Derived Schiff Base. J Fluoresc 2023; 33:2469-2478. [PMID: 37140739 DOI: 10.1007/s10895-023-03254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
A novel Zn2+ ion and alkaline phosphatase (ALP) selective fluorescence turn-on sensor L was developed by reacting pyridoxal 5'-phosphate (PLP) with hydrazine. Sensor L shows significant flurescence enhancement at 476 nm due to the formation of a L-Zn2+ complex in 1:1 binding stoichiometry with the association constant of 3.1⋅104 M- 1. Using L, the concentration of Zn2+ can be detected down to 2.34 µM, and the practical utility of L was validated by quantifying Zn2+ in real water samples. Additionally, the receptor L was applied to mimic the dephosphorylation reaction catalysed by the enzyme ALP and the resulted fluorescence change was monitored to detect the ALP activity.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, SV National Institute Technology, Surat, 395007, Gujarat, India
| | - Yachana Upadhyay
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India
| | - Rati Kanta Bera
- Department of Chemistry, ACC Wing, IMA Dehradun, Uttarakhand, 248007, India
| | - Suban K Sahoo
- Department of Chemistry, SV National Institute Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
6
|
Alom KM, Seo YJ. Rolling circle transcription/G-quadruplex/QnMorpholine probe for highly selective and sensitive detection of alkaline phosphatase activity. Anal Biochem 2023; 665:115050. [PMID: 36681138 DOI: 10.1016/j.ab.2023.115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
In this study, we combined a rolling circle transcription (RCT) system producing 22AG G-quadruplex RNA with a QnMorpholine (QNM) fluorescent probe for the selective and sensitive detection of alkaline phosphatase (ALP). ALP is involved in various biological functions, with monophosphate cleavage being one of its characteristic properties. Here, we developed a padlock RCT probing system in which a large amount of RCT 22AG RNA G-quadruplex was produced in the absence of ALP, providing a high fluorescence signal. In contrast, no RNA G-quadruplex was produced in the presence of ALP, with minimal fluorescence. This huge deviation in signal intensity allowed us to identify the presence or absence of ALP in a test sample. Under practical conditions, our system allowed the differentiation for ALP even when it was present at an extremely low concentration (0.0085 U/L), along with very high specificity. The simplicity and efficiency of this approach for ALP detection suggest its potential for use as a reliable diagnostic tool.
Collapse
Affiliation(s)
- Kazi Morshed Alom
- Department of Chemistry, Jeonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju, 561-756, Republic of Korea.
| |
Collapse
|
7
|
Das D, Sutradhar S, Gomila RM, Rissanen K, Frontera A, Ghosh BN. Synthesis, structure and application of a simple cadmium(II)-terpyridine complex as sensor material for selective detection of pyrophosphate anion. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Lundkvist S, Niaziorimi F, Szeri F, Caffet M, Terry SF, Johansson G, Jansen RS, van de Wetering K. A new enzymatic assay to quantify inorganic pyrophosphate in plasma. Anal Bioanal Chem 2023; 415:481-492. [PMID: 36400967 PMCID: PMC9839608 DOI: 10.1007/s00216-022-04430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Inorganic pyrophosphate (PPi) is a crucial extracellular mineralization regulator. Low plasma PPi concentrations underlie the soft tissue calcification present in several rare hereditary mineralization disorders as well as in more common conditions like chronic kidney disease and diabetes. Even though deregulated plasma PPi homeostasis is known to be linked to multiple human diseases, there is currently no reliable assay for its quantification. We here describe a PPi assay that employs the enzyme ATP sulfurylase to convert PPi into ATP. Generated ATP is subsequently quantified by firefly luciferase-based bioluminescence. An internal ATP standard was used to correct for sample-specific interference by matrix compounds on firefly luciferase activity. The assay was validated and shows excellent precision (< 3.5%) and accuracy (93-106%) of PPi spiked into human plasma samples. We found that of several anticoagulants tested only EDTA effectively blocked conversion of ATP into PPi in plasma after blood collection. Moreover, filtration over a 300,000-Da molecular weight cut-off membrane reduced variability of plasma PPi and removed ATP present in a membrane-enclosed compartment, possibly platelets. Applied to plasma samples of wild-type and Abcc6-/- rats, an animal model with established low circulating levels of PPi, the new assay showed lower variability than the assay that was previously in routine use in our laboratory. In conclusion, we here report a new and robust assay to determine PPi concentrations in plasma, which outperforms currently available assays because of its high sensitivity, precision, and accuracy.
Collapse
Affiliation(s)
- Stefan Lundkvist
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S 10th Street, PA, 19107, Philadelphia, USA
- Department of Chemistry (BMC), Uppsala University, Uppsala, Sweden
| | - Fatemeh Niaziorimi
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S 10th Street, PA, 19107, Philadelphia, USA
| | - Flora Szeri
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S 10th Street, PA, 19107, Philadelphia, USA
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | | | | | - Gunnar Johansson
- Department of Chemistry (BMC), Uppsala University, Uppsala, Sweden
| | - Robert S Jansen
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S 10th Street, PA, 19107, Philadelphia, USA.
| |
Collapse
|
9
|
Xiang H, Wang T, Tang S, Wang Y, Xiao N. A novel hydrazone-based fluorescent "off-on-off" probe for relay sensing of Ga 3+ and PPi ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120510. [PMID: 34689093 DOI: 10.1016/j.saa.2021.120510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
A novel hydrazone-based fluorescent probe (E)-3-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-4H-chromen-4-one (BTC) has been rationally designed and synthesized. BTC can subsequently detect Ga3+ and PPi ions through the absorption and emission off-on-off response with high specificity. Importantly, fluorescent probe BTC can well discriminate Ga3+ from Al3+ and In3+. The association constant (K) was calculated as 2.06 × 104M-1, and the limit of detection (LOD) was calculated as 4.88 × 10-2μM. Competitive binding studies also illustrated good results of the probe BTC towards Ga3+. Job's plot and HRMS results substantiated the 1:1 stoichiometry between BTC and Ga3+ ion. The interaction binding mode of BTC with Ga3+ was proposed by HRMS, 1H NMR spectral titration, UV-vis absorption and fluorescence spectral measurements. The combination of the restraint of the photo-induced electron transfer (PET) process and the chelation enhanced fluorescence (CHEF) process is responsible for the fluorescence enhancement of this probe. The in situ chelated BTC-Ga3+ could further monitor pyrophosphate ion (PPi) by demetallization process with quenching fluorescence emission. Additionally, the BTC and BTC-Ga3+ showed good cell permeability and could detect Ga3+ and PPi ions in onioninner epidermal cells, respectively.
Collapse
Affiliation(s)
- Hanyue Xiang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Tianran Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Sixian Tang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yujie Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Nao Xiao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Kaur J, Singh PK. Nanomaterial based advancement in the inorganic pyrophosphate detection methods in the last decade: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Shi Y, Wang J, Mu K, Liu S, Yang G, Zhang M, Yang J. Copper (II) Ion-Modified Gold Nanoclusters as Peroxidase Mimetics for the Colorimetric Detection of Pyrophosphate. SENSORS 2021; 21:s21165538. [PMID: 34450980 PMCID: PMC8400922 DOI: 10.3390/s21165538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 02/04/2023]
Abstract
Copper (II) ions have been shown to greatly improve the chemical stability and peroxidase-like activity of gold nanoclusters (AuNCs). Since the affinity between Cu2+ and pyrophosphate (PPi) is higher than that between Cu2+ and AuNCs, the catalytic activity of AuNCs-Cu2+ decreases with the introduction of PPi. Based on this principle, a new colorimetric detection method of PPi with high sensitivity and selectivity was developed by using AuNCs-Cu2+ as a probe. Under optimized conditions, the detection limit of PPi was 0.49 nM with a linear range of 0.51 to 30,000 nM. The sensitivity of the method was three orders of magnitude higher than that of a fluorescence method using AuNCs-Cu2+ as the probe. Finally, the AuNCs-Cu2+ system was successfully applied to directly determine the concentration of PPi in human urine samples.
Collapse
Affiliation(s)
- Yunjing Shi
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China; (Y.S.); (K.M.); (S.L.); (M.Z.); (J.Y.)
| | - Jinjie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China; (Y.S.); (K.M.); (S.L.); (M.Z.); (J.Y.)
- Correspondence: ; Tel.: +86-21-6779-1221
| | - Kun Mu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China; (Y.S.); (K.M.); (S.L.); (M.Z.); (J.Y.)
| | - Suqin Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China; (Y.S.); (K.M.); (S.L.); (M.Z.); (J.Y.)
| | - Guang Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China;
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China; (Y.S.); (K.M.); (S.L.); (M.Z.); (J.Y.)
| | - Jingxia Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China; (Y.S.); (K.M.); (S.L.); (M.Z.); (J.Y.)
| |
Collapse
|
12
|
Wang Y, Yan Y, Liu X, Ma C. An Exonuclease I-Aided Turn-Off Fluorescent Strategy for Alkaline Phosphatase Assay Based on Terminal Protection and Copper Nanoparticles. BIOSENSORS-BASEL 2021; 11:bios11050139. [PMID: 33946723 PMCID: PMC8145916 DOI: 10.3390/bios11050139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022]
Abstract
As an important DNA 3'-phosphatase, alkaline phosphatase can repair damaged DNA caused by replication and recombination. It is essential to measure the level of alkaline phosphatase to indicate some potential diseases, such as cancer, related to alkaline phosphatase. Here, we designed a simple and fast method to detect alkaline phosphatase quantitively. When alkaline phosphatase is present, the resulting poly T-DNA with a 3'-hydroxyl end was cleaved by exonuclease I, prohibiting the formation of fluorescent copper nanoparticles. However, the fluorescent copper nanoparticles can be monitored with the absence of alkaline phosphatase. Hence, we can detect alkaline phosphatase with this turn-off strategy. The proposed method is able to quantify the concentration of alkaline phosphatase with the LOD of 0.0098 U/L. Furthermore, we utilized this method to measure the effects of inhibitor Na3VO4 on alkaline phosphatase. In addition, it was successfully applied to quantify the level of alkaline phosphatase in human serum. The proposed strategy is sensitive, selective, cost effective, and timesaving, having a great potential to detect alkaline phosphatase quantitatively in clinical diagnosis.
Collapse
Affiliation(s)
| | | | - Xinfa Liu
- Correspondence: (X.L.); (C.M.); Tel.: +86-731-8265-0230 (X.L. & C.M.)
| | - Changbei Ma
- Correspondence: (X.L.); (C.M.); Tel.: +86-731-8265-0230 (X.L. & C.M.)
| |
Collapse
|
13
|
Yang Y, Chen P, Liu Y, Cai Z, Wang X, Me Y, Ding X, Lin L, Jiang H, Zhang Z, Ju Y. A colorimetric indicator-displacement assay based on stable Cu 2+ selective carbon dots for fluorescence turn-on detection of pyrophosphate anions in urine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119479. [PMID: 33503563 DOI: 10.1016/j.saa.2021.119479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/01/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Determination of PPi levels in urine represents a measurable factor for diagnostic, treatment, and monitoring of urolithiasis. Owing to the quenching ability of Cu2+ on fluorescent carbon dots (CDs) and strong binding affinity between Cu2+ and PPi, we develop a new off-on assay for PPi detection using newly BPHA CDs (BPHA: N,N-bis(pyridin-2-ylmethyl)hexan-1-amine). The fluorescence intensity of BPHA CDs was significantly quenched by Cu2+ ("off") through forming BPHA CDs/Cu2+ complexes and the fluorescence intensity of BPHA CDs /Cu2+ system was completely resumed by PPi ("on") owing to the release of free Cu2+. The fluorescence turn-off/on approach showed a highly selective response to PPi over the large family of other anions. The detection limits were 0.094 μM for Cu2+ and 0.025 μM for PPi, respectively. A wide linear range for PPi was up to 4400 μM. The indicator displacement assay (IDAs) using pyrocatechol violet (PV) as a colorimetric indicator was carried out to detect PPi with the naked eyes. The "off-on" fluorescent sensor based on BPHA CDs shows many merits, including convenient operation, cost-saving, high sensitivity, selectivity, stability and wide detecting range, which is applied to PPi detection in human urine sample.
Collapse
Affiliation(s)
- Yi Yang
- Changzhou Vocational Institute of Engineering, Changzhou 213164, China
| | - Pei Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuqing Liu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; School of Medicine, Xiamen University, Xiamen 361005, China
| | - Zheng Cai
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiyao Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yang Me
- The First affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Xiongyu Ding
- The First affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Lan Lin
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zhenqin Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Ju
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
14
|
Wang K, Wang W, Zhang XY, Jiang AQ, Yang YS, Zhu HL. Fluorescent probes for the detection of alkaline phosphatase in biological systems: Recent advances and future prospects. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116189] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Lee EY, Kim Y, Koo B, Noh GS, Lee H, Shin Y. A novel nucleic acid amplification system based on nano-gap embedded active disk resonators. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 320:128351. [PMID: 32501366 DOI: 10.1016/j.snb.2020.128391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 05/28/2023]
Abstract
Recent advances in nucleic acid based testing using bio-optical sensor approaches have been introduced but most are based on hybridization between the optical sensor and the bio-molecule and not on an amplification mechanism. Direct nucleic acid amplification on an optical sensor has several technical limitations, such as the sensitivity of the temperature sensor, instrument complexity, and high background signal. We here describe a novel nucleic acid amplification method based on a whispering gallery mode active resonator and discuss its potential molecular diagnostic application. By implanting nanoclusters as active compounds, this active resonator operates without tapered fiber coupling and emits a strong photoluminescence signal with low background in the wavelength of low absorption in an aqueous environment that is typical of biosensors. Our method also offers an extremely low detection threshold down to a single copy within 10 min due to the strong light-matter interaction in a nano-gap structure. We envision that this active resonator provides a high refractive index contrast for tight mode confinement with simple alignment as well as the possibility of reducing the device size so that a point-of-care system with low-cost, high-sensitivity and simplicity.
Collapse
Affiliation(s)
- Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yeseul Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Geun Su Noh
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hansuek Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| |
Collapse
|
16
|
Lüke JN, Neumaier F, Alpdogan S, Hescheler J, Schneider T, Albanna W, Akhtar-Schäfer I. Submicromolar copper (II) ions stimulate transretinal signaling in the isolated retina from wild type but not from Ca v2.3-deficient mice. BMC Ophthalmol 2020; 20:182. [PMID: 32375703 PMCID: PMC7201970 DOI: 10.1186/s12886-020-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/24/2020] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND So far, only indirect evidence exists for the pharmacoresistant R-type voltage-gated Ca2+ channel (VGCC) to be involved in transretinal signaling by triggering GABA-release onto ON-bipolar neurons. This release of inhibitory neurotransmitters was deduced from the sensitivity of the b-wave to stimulation by Ni2+, Zn2+ and Cu2+. To further confirm the interpretation of these findings, we compared the effects of Cu2+ application and chelation (using kainic acid, KA) on the neural retina from wildtype and Cav2.3-deficient mice. Furthermore, the immediately effect of KA on the ERG b-wave modulation was assessed. METHODS Transretinal signaling was recorded as an ERG from the superfused murine retina isolated from wildtype and Cav2.3-deficient mice. RESULTS In mice, the stimulating effect of 100 nM CuCl2 is absent in the retinae from Cav2.3-deficient mice, but prominent in Cav2.3-competent mice. Application of up to 3 mM tricine does not affect the murine b-wave in both genotypes, most likely because of chelating amino acids present in the murine nutrient solution. Application of 27 μM KA significantly increased the b-wave amplitude in wild type and Cav2.3 (-|-) mice. This effect can most likely be explained by the stimulation of endogenous KA-receptors described in horizontal, OFF-bipolar, amacrine or ganglion cells, which could not be fully blocked in the present study. CONCLUSION Cu2+-dependent modulation of transretinal signaling only occurs in the murine retina from Cav2.3 competent mice, supporting the ideas derived from previous work in the bovine retina that R-type Ca2+ channels are involved in shaping transretinal responses during light perception.
Collapse
Affiliation(s)
- Jan Niklas Lüke
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany
| | - Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany
| | - Serdar Alpdogan
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany.
| | - Walid Albanna
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany. .,Department of Neurosurgery, University Hospital, RWTH Aachen, Aachen, Germany.
| | - Isha Akhtar-Schäfer
- Institute for Neurophysiology, University of Cologne, Robert-Koch Str. 39, D-50931, Cologne, Germany
| |
Collapse
|