1
|
Baker DV, Bernal-Escalante J, Traaseth C, Wang Y, Tran MV, Keenan S, Algar WR. Smartphones as a platform for molecular analysis: concepts, methods, devices and future potential. LAB ON A CHIP 2025; 25:884-955. [PMID: 39918205 DOI: 10.1039/d4lc00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Over the past 15 years, smartphones have had a transformative effect on everyday life. These devices also have the potential to transform molecular analysis over the next 15 years. The cameras of a smartphone, and its many additional onboard features, support optical detection and other aspects of engineering an analytical device. This article reviews the development of smartphones as platforms for portable chemical and biological analysis. It is equal parts conceptual overview, technical tutorial, critical summary of the state of the art, and outlook on how to advance smartphones as a tool for analysis. It further discusses the motivations for adopting smartphones as a portable platform, summarizes their enabling features and relevant optical detection methods, then highlights complementary technologies and materials such as 3D printing, microfluidics, optoelectronics, microelectronics, and nanoparticles. The broad scope of research and key advances from the past 7 years are reviewed as a prelude to a perspective on the challenges and opportunities for translating smartphone-based lab-on-a-chip devices from prototypes to authentic applications in health, food and water safety, environmental monitoring, and beyond. The convergence of smartphones with smart assays and smart apps powered by machine learning and artificial intelligence holds immense promise for realizing a future for molecular analysis that is powerful, versatile, democratized, and no longer just the stuff of science fiction.
Collapse
Affiliation(s)
- Daina V Baker
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Christine Traaseth
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Yihao Wang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Seth Keenan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
2
|
Soltani-Shahrivar M, Afkhami A, Madrakian T. Design and optimization of a cost-effective paper-based voltammetric sensor for the determination of trinitrotoluene (TNT) utilizing cysteamine-linked Fe 3O 4 @Au nanocomposite. Talanta 2024; 274:126041. [PMID: 38581854 DOI: 10.1016/j.talanta.2024.126041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
This paper presents the development and optimization of a cost-effective paper electrochemical sensor for the detection of TNT using Fe3O4-Au core-shell nanoparticles modified with cysteamine (Fe3O4@Au/CA). The sensor was constructed by modifying a graphite paste with the aforementioned nanoparticles, which facilitated the formation of a Meisenheimer complex between cysteamine and TNT as an electron donor and an electron acceptor, respectively. The central composite design was employed to optimize four key parameters pH, modifier percentage, contact time, and buffer type to enhance the performance of the sensor. The detection limit was found to be 0.5 nM of TNT, while the linear range of the electrode response spanned from 0.002 μM to 10 μM. The simplicity and low cost of the sensor make it highly attractive for practical applications, particularly in scenarios where rapid and on-site TNT detection is required.
Collapse
Affiliation(s)
- Morteza Soltani-Shahrivar
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Science, Bu-Ali Sina University, Hamedan, Iran
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Science, Bu-Ali Sina University, Hamedan, Iran; D-8 International University, Hamedan, Iran.
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Science, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
3
|
Soltani-Shahrivar M, Afkhami A, Madrakian T, Jalal NR. Sensitive and selective impedimetric determination of TNT using RSM-CCD optimization. Talanta 2023; 257:124381. [PMID: 36801757 DOI: 10.1016/j.talanta.2023.124381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Detection of trace amounts of 2,4,6-Trinitrotoluene as a widely used explosive in the military and industrial sectors is of vital importance due to security and environmental concerns. The sensitive and selective measurement characteristics of the compound still is considered a challenge for analytical chemists. Unlike conventional optical and electrochemical methods, the electrochemical impedance spectroscopy technique (EIS), has a very high sensitivity, but it faces a significant challenge in that it requires complex and expensive steps to modify the electrode surface with selective agents. We reported the design and construction of an inexpensive, simple, sensitive, and selective impedimetric electrochemical TNT sensor based on the formation of a Meisenheimer complex between magnetic multiwalled carbon nanotubes modified with aminopropyl triethoxysilane (MMWCNTs @ APTES) and TNT. The formation of the mentioned charge transfer complex at the electrode-solution interface blocks the electrode surface and disrupts the charge transfer in [(Fe (CN) 6)] 3-/4- redox probe system. Charge transfer resistance changes (ΔRCT) were used as an analytical response that corresponded to TNT concentration. To investigate the influence of effective parameters on the electrode response, such as pH, contact time, and modifier percentage, the response surface methodology based on central composite design (RSM-CCD) was used. The calibration curve was achieved in the range of 1-500 nM with a detection limit of 0.15 nM under optimal conditions, which included pH of 8.29, contact time of 479 s, and modifier percentage of 12.38% (w/w). The selectivity of the constructed electrode towards several nitroaromatic species was investigated, and no significant interference was found. Finally, the proposed sensor was able to successfully measure TNT in various water samples with satisfactory recovery percentages.
Collapse
Affiliation(s)
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; D-8 International University, Hamedan, Iran.
| | | | | |
Collapse
|
4
|
Analytical applications of smartphones for agricultural soil analysis. Anal Bioanal Chem 2023:10.1007/s00216-023-04558-1. [PMID: 36790460 PMCID: PMC10328891 DOI: 10.1007/s00216-023-04558-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
Soil is one of the most important farming resources. Appropriate managing of its quality promotes productive and sustainable agriculture. The valuable farm practice in soil quality managing is based on regular soil analysis with the aim of determining the exact amount of nutrients or other chemical, physical, and biological soil properties. Soil analysis usually requires sample collection at the desired sampling depth followed by sample delivery to chemical laboratories. However, laboratory analyses are resource-intensive and costly, and require a lot of time, effort, and equipment. A low-cost, fast, and effective alternative for soil quality control is the application of smartphones to perform chemical analyses directly in the field or on the farm. In this paper, an overview of recent developments on smartphone-based methodologies for agricultural purposes and portable evaluation of soil quality and its properties is presented. The discussion focuses on recent applications of smartphone-based devices for the determination of basic soil parameters, content of organic matter, mineral fertilizers, and organic or inorganic pollutants. Obvious advantages of using smartphones, such as convenience and simplicity of use, and the main shortcomings, such as relatively poor precision of the results obtained, are also discussed. The general trend shows the huge interest from researchers to move the technology into the field with the aim of providing cost-effective and rapid soil analysis. This paper can broaden the understanding of using smartphones for chemical analysis of soil samples, as it is a relatively new area and is expected to be developed rapidly.
Collapse
|
5
|
Zhu Y, Li B, Huang W, He Y, Liu X. Tuning solvent-solute interactions enable visual colorimetric detection of nitro-aromatic explosives. ANAL SCI 2023; 39:115-121. [PMID: 36223061 DOI: 10.1007/s44211-022-00198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023]
Abstract
The Janowski reaction is a critical reaction for visual colorimetric detection of nitro-aromatic explosives. However, the solvent effect is still not well explored. Herein, we report the solvent-dependent activity of the Janowski reaction between 2,4-dinitrotoluene (DNT)/2,4,6-trinitrotoluene (TNT) and NaOH. Four common solvents are studied. It is found that acetone with high donor number and low polarity is able to readily dissolve the product of Janowski reaction (Meisenheimer complexes) via Lewis acid-base interactions and solvation rules, facilitating the Janowski reactions between DNT/TNT and NaOH. Based on the color change of the Janowski reactions within acetone, a visual colorimetric assay is established. The present assay can detect DNT and TNT with a detection limit of 1.4 μM and 1.2 μM, which allows for naked-eye detection. In addition, this assay is highly selective and applicable to DNT/TNT detection in soil samples. Our work reveals the solvent effect on the Janowski reaction, providing a simple and rapid method for detection of nitro-aromatic explosives.
Collapse
Affiliation(s)
- Yongbing Zhu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Boyan Li
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wei Huang
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yi He
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China. .,Xinjiang Key Laboratory of Explosives Safety Science, Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
6
|
Abstract
The continuously rising interest in chemical sensors’ applications in environmental monitoring, for soil analysis in particular, is owed to the sufficient sensitivity and selectivity of these analytical devices, their low costs, their simple measurement setups, and the possibility to perform online and in-field analyses with them. In this review the recent advances in chemical sensors for soil analysis are summarized. The working principles of chemical sensors involved in soil analysis; their benefits and drawbacks; and select applications of both the single selective sensors and multisensor systems for assessments of main plant nutrition components, pollutants, and other important soil parameters (pH, moisture content, salinity, exhaled gases, etc.) of the past two decades with a focus on the last 5 years (from 2017 to 2021) are overviewed.
Collapse
|
7
|
Development of a Screening Method for Sulfamethoxazole in Environmental Water by Digital Colorimetry Using a Mobile Device. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibiotic resistance is a major health concern of the 21st century. The misuse of antibiotics over the years has led to their increasing presence in the environment, particularly in water resources, which can exacerbate the transmission of resistance genes and facilitate the emergence of resistant microorganisms. The objective of the present work is to develop a chemosensor for screening of sulfonamides in environmental waters, targeting sulfamethoxazole as the model analyte. The methodology was based on the retention of sulfamethoxazole in disks containing polystyrene divinylbenzene sulfonated sorbent particles and reaction with p-dimethylaminocinnamaldehyde, followed by colorimetric detection using a computer-vision algorithm. Several color spaces (RGB, HSV and CIELAB) were evaluated, with the coordinate a_star, from the CIELAB color space, providing the highest sensitivity. Moreover, in order to avoid possible errors due to variations in illumination, a color palette is included in the picture of the analytical disk, and a correction using the a_star value from one of the color patches is proposed. The methodology presented recoveries of 82–101% at 0.1 µg and 0.5 µg of sulfamethoxazole (25 mL), providing a detection limit of 0.08 µg and a quantification limit of 0.26 µg. As a proof of concept, application to in-field analysis was successfully implemented.
Collapse
|
8
|
Apak R, Çekiç SD, Üzer A, Çapanoğlu E, Çelik SE, Bener M, Can Z, Durmazel S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5266-5321. [PMID: 33170182 DOI: 10.1039/d0ay01521k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of analytical techniques for antioxidant compounds is important, because antioxidants that can inactivate reactive species and radicals are health-beneficial compounds, also used in the preservation of food and protection of almost every kind of organic substance from oxidation. Energetic substances include explosives, pyrotechnics, propellants and fuels, and their determination at bulk/trace levels is important for the safety and well-being of modern societies exposed to various security threats. Most of the time, in field/on site detection of these important analytes necessitates the use of colorimetric sensors and probes enabling naked-eye detection, or low-cost and easy-to-use fluorometric sensors. The use of nanosensors brings important advantages to this field of analytical chemistry due to their various physico-chemical advantages of increased surface area, surface plasmon resonance absorption of noble metal nanoparticles, and superior enzyme-mimic catalytic properties. Thus, this critical review focuses on the design strategies for colorimetric sensors and nanoprobes in characterizing antioxidant and energetic substances. In this regard, the main themes and properties in optical sensor design are defined and classified. Nanomaterial-based optical sensors/probes are discussed with respect to their mechanisms of operation, namely formation and growth of noble metal nanoparticles, their aggregation and disaggregation, displacement of active constituents by complexation or electrostatic interaction, miscellaneous mechanisms, and the choice of metallic oxide nanoparticles taking part in such formulations.
Collapse
Affiliation(s)
- Reşat Apak
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar 34320, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|