1
|
Hu G, Wu T, Liu Z, Gao S, Hao J. Application of molecular imprinting technology based on new nanomaterials in adsorption and detection of fluoroquinolones. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2467-2479. [PMID: 37183439 DOI: 10.1039/d3ay00353a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Irrational use of fluoroquinolones (FQs) can lead to allergic reactions, adverse reactions to the heart and damage of the liver; thus, it is of great significance to establish rapid, sensitive and accurate detection methods for FQs. Molecularly imprinted polymers (MIPs) with specific structures synthesized by molecular imprinting technology (MIT) are widely used for the detection of FQs due to their high specificity, high sensitivity and stable performance. Recently, new functional nanomaterials with different morphologies and sizes, which can provide rich sites for surface chemical reactions, have attracted more and more attention of the researchers. Thus, the application status and development prospects of MIT based on new nanomaterials in the adsorption and detection of FQs were summarized in this study, providing a theoretical basis and technical guarantee for the development of new and efficient food safety analysis strategies based on MIPs.
Collapse
Affiliation(s)
- Gaoshuang Hu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Tianqi Wu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Ziyang Liu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Shan Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| |
Collapse
|
2
|
Prajitha N, Mohanan PV. Intracellular inflammatory signalling cascades in human monocytic cells on challenge with phytohemagglutinin and 2,4,6-trinitrophenol. Mol Cell Biochem 2022; 477:395-414. [PMID: 34775567 DOI: 10.1007/s11010-021-04296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Phytohemagglutinin (PHA) is a plant mitogen that can agglutinate human leukocytes and erythrocytes. PHA is mainly derived from red kidney beans and can act as an exogenous pyrogen. When entering into the blood circulation, exogenous pyrogens principally interact with monocytes and macrophages and induce the release of pro-inflammatory cytokines. Monocytes and macrophages are the cells that fight against foreign invaders and acts as a primary line of immune defence. Similar to PHA, the chemical 2,4,6-trinitrophenol (TNP) also acts as an exogenous pyrogen. The study focused on the in vitro interaction of PHA and TNP with the human monocyte/macrophage cell model THP-1. The exposure and associated change in cellular morphology, organelle function, mechanism of cell death, inflammatory signalling and expression of inflammation-related genes were analyzed in different time periods. It was observed that PHA and TNP induce dose and time-dependent toxicity to monocytes/macrophages where the mechanism of cell death was different for PHA and TNP. Both PHA and TNP can evoke immune signalling with increased expression of inflammatory genes and associated activation of intracellular signalling cascades.
Collapse
Affiliation(s)
- N Prajitha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695012, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695012, India.
| |
Collapse
|
3
|
Sullam EM, Adam KM, NSANZAMAHORO STANISLAS, Cai M, Gao Z, Liu J, Chen H, Xiao J. One-pot synthesis of poly(vinylpyrrolidone)-encapsulated color-emitting silicon quantum dots for sensitive and selective detection of 2,4,6-trinitrophenol. NEW J CHEM 2022. [DOI: 10.1039/d2nj02703h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we illustrate an efficient, convenient, and simple method for the sensitive and selective detection of nitro explosive 2,4,6-trinitrophenol (TNP) in 100% water medium by bright cyan-blue color emitting colloidal...
Collapse
|
4
|
Nie Y, Wang S, Lin Y, Lai W, Weng W, Tang D. Highly sensitive fluorescent probe for selective detection of hypochlorite ions using nitrogen-fluorine co-doped carbon nanodots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119231. [PMID: 33277209 DOI: 10.1016/j.saa.2020.119231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Hypochlorite ions (ClO-) are widely used in bleaching agents and disinfectants. However, high concentrations of chloride species are harmful to human health. Therefore, effective methods for the detection of ClO- ions are required. In this study, using 4-fluorophthalic acid and glycine, nitrogen-fluorine co-doped carbon nanodots (N,F-CDs) were synthesized by one-pot hydrothermal synthesis for use as a fluorescent probe for the fluorometric detection of ClO- in aqueous media, based on the inhibition of n → π* transitions. The excitation and emission peak centers of the N,F-CDs are at 387 and 545 nm, respectively. The N,F-CDs show a fast quenching response (<1 min) for ClO- and can be used in a wide pH range (pH 4-13). Under optimal conditions, the fluorescence intensity decreased with increase in the ClO- concentration from 0 to 35 μM, and a low limit of detection (9.6 nM) was achieved. This probe possesses excellent selectivity and high sensitivity and was used to analyze standardized samples of piped water, achieving a satisfactory recovery. Thus, this nitrogen-fluorine co-doped nanodot probe is promising for the detection of pollutants.
Collapse
Affiliation(s)
- Yujing Nie
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China.
| | - Shuhan Wang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Youxiu Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Wen Weng
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
5
|
Wang X, Lei M, Zhang T, Zhang Q, Zhang R, Yang M. A water-stable multi-responsive luminescent Zn-MOF sensor for detecting TNP, NZF and Cr 2O 72- in aqueous media. Dalton Trans 2021; 50:3816-3824. [PMID: 33524087 DOI: 10.1039/d0dt03049j] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The wide prevalence of organic and inorganic pollutants in water from various industries is responsible for serious environmental problems and endangers human beings. Therefore, the search for effective methods to detect these pollutants has gained great importance. In this work, a new luminescent MOF, {[Zn(L)(bpe)0.5]·DMF}n (1) [H2L = 4,4'-((naphthalene-1,4-dicarbonyl)bis(azanediyl))dibenzoic acid, bpe = 1,2-bis(4-pyridyl)ethene], was solvothermally synthesized and structurally characterized. In this MOF, Zn-SBUs (SBUs = secondary building units) were connected by acylamide-containing dicarboxylate L2- and nitrogen-containing bpe molecules to yield a 3D porous framework with isolated DMF molecules in the pores. The activated solvent-free MOF sample (denoted as 1a) with good water-stability was obtained by the solvent-exchange and vacuum heat treatment techniques. The luminescence sensing experiments showed that 1a could sensitively, selectively and reversibly detect 2,4,6-trinitrophenol (TNP), nitrofurazone (NZF) and Cr2O72- in aqueous media, and the corresponding luminescence quenching mechanism has also been discussed. In addition, MOF 1a could quantitatively detect TNP, NZF and Cr2O72- in tap water samples, indicating that MOF 1a has the potential to detect the aforesaid pollutants in various environmental water matrices.
Collapse
Affiliation(s)
- Xiaohe Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | | | | | | | | | | |
Collapse
|
6
|
Wang J, Yu M, Chen L, Li Z, Li S, Jiang F, Hong M. Construction of a Stable Lanthanide Metal-Organic Framework as a Luminescent Probe for Rapid Naked-Eye Recognition of Fe 3+ and Acetone. Molecules 2021; 26:1695. [PMID: 33803563 PMCID: PMC8003027 DOI: 10.3390/molecules26061695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 01/07/2023] Open
Abstract
Four lanthanide metal-organic frameworks (Ln-MOFs), namely {[Me2NH2][LnL]·2H2O}n (Ln = Eu 1, Tb 2, Dy 3, Gd 4), have been constructed from a new tetradentate ligand 1-(3,5-dicarboxylatobenzyl)-3,5-pyrazole dicarboxylic acid (H4L). These isostructural Ln-MOFs, crystallizing in the monoclinic P21/c space group, feature a 3D structure with 7.5 Å × 9.8 Å channels along the b axis and the point symbol of {410.614.84} {45.6}2. The framework shows high air and hydrolytic stability, which can keep stable after exposed to humid air for 30 days or immersed in water for seven days. Four MOFs with different lanthanide ions (Eu3+, Tb3+, Dy3+, and Gd3+) ions exhibit red, green, yellow, and blue emissions, respectively. The Tb-MOF emitting bright green luminescence can selectively and rapidly (<40 s) detect Fe3+ in aqueous media via a fluorescence quenching effect. The detection shows excellent anti-inference ability toward many other cations and can be easily recognized by naked eyes. In addition, it can also be utilized as a rapid fluorescent sensor to detect acetone solvent as well as acetone vapor. Similar results of sensing experiments were observed from Eu-MOF. The sensing mechanism are further discussed.
Collapse
Affiliation(s)
- Jiayishuo Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Muxin Yu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
- Organic Optoelectronics Engineering Research Centre of Fujian’s Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China
| | - Lian Chen
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
| | - Zhijia Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shengchang Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Feilong Jiang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
| | - Maochun Hong
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (J.W.); (M.Y.); (Z.L.); (S.L.); (F.J.)
| |
Collapse
|
7
|
Green Preparation of Fluorescent Nitrogen-Doped Carbon Quantum Dots for Sensitive Detection of Oxytetracycline in Environmental Samples. NANOMATERIALS 2020; 10:nano10081561. [PMID: 32784490 PMCID: PMC7466531 DOI: 10.3390/nano10081561] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Nitrogen-doped carbon quantum dots (N-CQDs) with strong fluorescence were prepared by a one-step hydrothermal method using natural biomass waste. Two efficient fluorescent probes were constructed for selective and sensitive detection of oxytetracycline (OTC). The synthesized N-CQDs were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FT-IR), X-ray photon spectroscopy (XPS), atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HRTEM), which proved that the synthesized N-CQDs surface were functionalized and had stable fluorescence performance. The basis of N-CQDs detection of OTC was discussed, and various reaction conditions were studied. Under optimized conditions, orange peel carbon quantum dots (ON-CQDs) and watermelon peel carbon quantum dots (WN-CQDs) have a good linear relationship with OTC concentrations in the range of 2-100 µmol L-1 and 0.25-100 µmol L-1, respectively. ON-CQDs and WN-CQDs were both successfully applied in detecting the OTC in pretreated tap water, lake water, and soil, with the recovery rate at 91.724-103.206%, and the relative standard deviation was less than 5.35%. The results showed that the proposed N-CQDs proved to be green and simple, greatly reducing the detection time for OTC in the determination environment.
Collapse
|
8
|
Wang X, Zhang X, Cao H, Huang Y. A facile and rapid approach to synthesize uric acid-capped Ti3C2 MXene quantum dots for the sensitive determination of 2,4,6-trinitrophenol both on surfaces and in solution. J Mater Chem B 2020; 8:10837-10844. [DOI: 10.1039/d0tb02078h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The UA@Ti3C2 QDs with blue light emission were synthesized by a simple and green microwave-assisted method, and used as a sensitive and selective probe for the detection of TNP both on surfaces and in solution.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xiaodan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Haiyan Cao
- Key Laboratory of Chongqing Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Yuming Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|