1
|
Manmana Y, Macka M, Nuchtavorn N. Distance-based paper microfluidic devices for rapid visual quantification of heavy metals in herbal supplements and cosmetics. RSC Adv 2024; 14:36142-36151. [PMID: 39534052 PMCID: PMC11552691 DOI: 10.1039/d4ra05358c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Distance-based detection (DbD) on paper-based microfluidic analytical devices (μPADs) has emerged as a promising, cost-effective, simple, and instrumentation-free assay method. Broadening the applicability of a new way of immobilization of reagent for DbD on μPADs (DμPADs) is presented, employing an ion exchange (IE) interaction of an anionic metallochromic reagent, 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol (5-Br-PAPS), on the anion-exchange filter paper. The IE DμPADs demonstrate superiority over standard cellulose filter paper in terms of the degree of reagent immobilization, detection sensitivity, and clear detection endpoints due to the strong retention of 5-Br-PAPS. The study investigated various parameters influencing DbD, including 5-Br-PAPS concentrations (0.25-1 mM), buffer types (acetic acid-Tris, MES), buffer concentrations (20-500 mM), and auxiliary complexing agents (acetic, formic, and glycolic acids). Subsequently, the performance of 17 metals (Ag+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Hg2+, La2+, Mn2+, Ni2+, Pb2+, Ti2+, Zn2+, Al3+, As3+, Fe3+, and V4+) was evaluated, with color formation observed for 12 metals. Additionally, the paper surface was examined using SEM and SEM-EDX to verify the suitability of certain areas in the detection channel for reagent immobilization and metal binding. This method demonstrates quantitation limits of metals in the low μg mL-1 range, showing great potential for the rapid screening of toxic metals commonly found in herbal supplements and cosmetics regulated by the Food and Drug Administration (FDA). Thus, it holds promise for enhancing safety and regulatory compliance in product quality assessment. Furthermore, this method offers a cost-effective, environmentally sustainable, and user-friendly approach for the rapid visual quantification of heavy metals for in-field analysis, eliminating the need for complex instrumentation.
Collapse
Affiliation(s)
- Yanawut Manmana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University 447 Sri-Ayudhaya Rd., Rajathevee Bangkok 10400 Thailand
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS), University of Tasmania Private Bag 75 Hobart 7001 Australia
| | - Mirek Macka
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS), University of Tasmania Private Bag 75 Hobart 7001 Australia
- Department of Chemistry and Biochemistry, Mendel University in Brno Zemedelska 1 CZ-613 00 Brno Czech Republic
- Central European Institute of Technology, Brno University of Technology Purkynova 123 CZ-612 00 Brno Czech Republic
| | - Nantana Nuchtavorn
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University 447 Sri-Ayudhaya Rd., Rajathevee Bangkok 10400 Thailand
| |
Collapse
|
2
|
Katib S, Apichai S, Pattananandecha T, Jiaranaikulwanitch J, Sirithunyalug B, Grudpan K, Saenjum C. Development of a sustainable procedure for smartphone-based colorimetric determination of benzalkonium chloride in pharmaceutical preparations. Heliyon 2024; 10:e28965. [PMID: 38694067 PMCID: PMC11061672 DOI: 10.1016/j.heliyon.2024.e28965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/24/2024] [Accepted: 03/27/2024] [Indexed: 05/03/2024] Open
Abstract
A sustainable procedure offering green, simple, and rapid analysis was developed to determine benzalkonium chloride (BKC) in pharmaceutical preparations. The determination using smartphones was based on the ion pair colorimetric reaction with bromothymol blue (BTB), which produces a yellow color. The intensity of the product color, which is proportional to the concentration of BKC, was detected and evaluated using a smartphone camera and an image processing application. The procedure was performed in a microliter and was rapidly detected within 1 min after incubation. This offered high throughput at 28 samples per well plate in duplicate. Linear calibration, which was a plot of BKC concentrations and relative red intensities, was in the range of 2.0-24.0 μg/mL with an R2 of 0.997. The limits of detection (LOD) and quantitation (LOQ) were 1.0 and 3.2 μg/mL, respectively. This work was successful in applying it to pharmaceutical materials, disinfectant products, and pharmaceutical products containing BKC. It was discovered that the concentrations of BKC as an active ingredient in pharmaceutical materials were 82% w/v, whereas those in disinfectant products ranged from 0.4 to 2.1% w/v. In pharmaceutical products, ophthalmic drops and nasal sprays contain BKC as preservatives in the 0.01-0.02, and the 0.02% w/v, respectively. The results obtained by the proposed procedure compared with a reference titration method showed no significant differences at a 95% confidence level with 1.2-3.4% RSDs. This promotes the efficiency of pharmaceutical preparations regarding infection prevention and control by ensuring that available disinfectants contain a sufficient concentration of BKC. Additionally, this improves the efficiency of pharmaceutical preparations for quality control of pharmaceutical products by ensuring that the available preservatives maintain a sufficient concentration throughout the lifespan of the products.
Collapse
Affiliation(s)
- Suphakorn Katib
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Sutasinee Apichai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Innovation in Analytical Science and Technology for Biodiversity Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Thanawat Pattananandecha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Innovation in Analytical Science and Technology for Biodiversity Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Jutamas Jiaranaikulwanitch
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Innovation in Analytical Science and Technology for Biodiversity Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai, Thailand
| | - Busaban Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Innovation in Analytical Science and Technology for Biodiversity Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai, Thailand
| | - Kate Grudpan
- Research Center for Innovation in Analytical Science and Technology for Biodiversity Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chalermpong Saenjum
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Innovation in Analytical Science and Technology for Biodiversity Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Xiao J, Jiang J, Zhao Z, Guo J, Wang J. Clarity improvement of the discoloration boundary and detection of Hg 2+ ions by using a polystyrene nanoparticle-modified paper-based microdevice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2366-2375. [PMID: 37129571 DOI: 10.1039/d3ay00174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Distance-based microfluidic paper-based analytical devices (μPADs) can be used to calculate the analyte content by reading the length of the discolored area in the channel. A blurred discoloration boundary is difficult to distinguish, resulting in reading errors. In this study, we constructed a μPAD modified with carboxyl-containing polystyrene nanoparticles (PS-μPAD) to improve the discoloration-boundary clarity. The filling of the pores of the fibers with the deposited polystyrene nanoparticles (PS NPs) caused a decrease in the paper porosity, resulting in a flow delay. Meanwhile, the carboxyl groups carried by PS NPs were able to form hydrogen bonds with hydroxyl-containing compounds FLPI, a Hg2+ probe, and the two factors acted synergistically to fix the FLPI to react in situ, raising the discoloration-boundary clarity. Compared with the unmodified μPAD, the detection of Hg2+ ions using the PS-μPAD still had a good linear relationship. Importantly, the color-depth difference inside and outside the discoloration boundary improved by about four times and showed excellent reproducibility in different populations. The method was simple and easy to expand, thereby providing an idea for more widespread application of distance-based μPADs.
Collapse
Affiliation(s)
- Jingcheng Xiao
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jingjing Jiang
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zexu Zhao
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jiahao Guo
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jinyi Wang
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| |
Collapse
|
4
|
Jin Y, Aziz AUR, Wu B, Lv Y, Zhang H, Li N, Liu B, Zhang Z. The Road to Unconventional Detections: Paper-Based Microfluidic Chips. MICROMACHINES 2022; 13:1835. [PMID: 36363856 PMCID: PMC9696303 DOI: 10.3390/mi13111835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Conventional detectors are mostly made up of complicated structures that are hard to use. A paper-based microfluidic chip, however, combines the advantages of being small, efficient, easy to process, and environmentally friendly. The paper-based microfluidic chips for biomedical applications focus on efficiency, accuracy, integration, and innovation. Therefore, continuous progress is observed in the transition from single-channel detection to multi-channel detection and in the shift from qualitative detection to quantitative detection. These developments improved the efficiency and accuracy of single-cell substance detection. Paper-based microfluidic chips can provide insight into a variety of fields, including biomedicine and other related fields. This review looks at how paper-based microfluidic chips are prepared, analyzed, and used to help with both biomedical development and functional integration, ideally at the same time.
Collapse
Affiliation(s)
- Yuhang Jin
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- School of Life Science and Pharmacy, Dalian University of Technology, Dalian 116024, China
| | - Aziz ur Rehman Aziz
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bin Wu
- China Certification and Inspection Group Liaoning Co., Ltd., Dalian 116039, China
| | - Ying Lv
- China Certification and Inspection Group Liaoning Co., Ltd., Dalian 116039, China
| | - Hangyu Zhang
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Life Science and Pharmacy, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Trovato V, Sfameni S, Rando G, Rosace G, Libertino S, Ferri A, Plutino MR. A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, Perspective, and Prospective. Molecules 2022; 27:5709. [PMID: 36080476 PMCID: PMC9457686 DOI: 10.3390/molecules27175709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years thanks to the Internet of Things (IoT), the demand for the development of miniaturized and wearable sensors has skyrocketed. Among them, novel sensors for wearable medical devices are mostly needed. The aim of this review is to summarize the advancements in this field from current points of view, focusing on sensors embedded into textile fabrics. Indeed, they are portable, lightweight, and the best candidates for monitoring biometric parameters. The possibility of integrating chemical sensors into textiles has opened new markets in smart clothing. Many examples of these systems are represented by color-changing materials due to their capability of altering optical properties, including absorption, reflectance, and scattering, in response to different external stimuli (temperature, humidity, pH, or chemicals). With the goal of smart health monitoring, nanosized sol-gel precursors, bringing coupling agents into their chemical structure, were used to modify halochromic dyestuffs, both minimizing leaching from the treated surfaces and increasing photostability for the development of stimuli-responsive sensors. The literature about the sensing properties of functionalized halochromic azo dyestuffs applied to textile fabrics is reviewed to understand their potential for achieving remote monitoring of health parameters. Finally, challenges and future perspectives are discussed to envisage the developed strategies for the next generation of functionalized halochromic dyestuffs with biocompatible and real-time stimuli-responsive capabilities.
Collapse
Affiliation(s)
- Valentina Trovato
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Sebania Libertino
- Institute of Microelectronics and MicrosystemsCNR–IMM, Ottava Strada 5, 95121 Catania, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| |
Collapse
|
6
|
Khachornsakkul K, Phuengkasem D, Palkuntod K, Sangkharoek W, Jamjumrus O, Dungchai W. A Simple Counting-Based Measurement for Paper Analytical Devices and Their Application. ACS Sens 2022; 7:2093-2101. [PMID: 35736786 DOI: 10.1021/acssensors.2c01003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work introduces the concept of a counting-based measurement on paper analytical devices (cPADs) to improve the utilization of numerous reactions. The design of cPADs consists of two layers of paper substrates; the first layer contains a central sample zone combined with a radial surrounded by 12 detection zones that are predeposited with the various reagents, and the second layer acts as a connection channel between the sample zone and each detection zone. The solution can vertically flow from the first to the second layer and then move through the area to each subsequent detection zone. The analyte level can be evaluated by counting the number of detection zones that change color from a blank signal. Furthermore, our cPADs exhibit a capability of implementation for a broad series of reactions. Compared to the dPAD technique, some reactions that are possibly difficult to apply in such devices can be wholly enabled in our devices. The final color reaction on cPADs can apparently occur due to its identity. We applied this technique to the monitoring of carbaryl (CBR) and copper ions (Cu2+) using different reactions, including azo-coupling and complexation, respectively. Accordingly, this indicates an excellent result validated using the more traditional methods. Our cPADs can be applied for rapid screening of both CBR and Cu2+ in water samples with outstanding accuracy and precision using a naked-eye measurement by a relatively unskilled person. We offer a simple platform on PADs for rapid screening, combining high cost-effectiveness within a miniaturized platform designed for use with onsite applications, which is thus suitable for several different reactions.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Danai Phuengkasem
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Kitiya Palkuntod
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Wuttichai Sangkharoek
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Opor Jamjumrus
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| | - Wijitar Dungchai
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok 10140, Thailand
| |
Collapse
|
7
|
Nuchtavorn N, Rypar T, Nedjl L, Vaculovicova M, Macka M. Distance-based detection in analytical flow devices: from gas detection tubes to microfluidic chips and microfluidic paper-based analytical devices. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|