1
|
Croes CA, Noriega DB, Wichers H, Savelkoul HFJ, Ruinemans-Koerts J, Teodorowicz M. Characterization of different stages of Maillard reaction in soy: impact on physicochemical properties and immunogenicity of soy proteins. Food Funct 2025; 16:2577-2588. [PMID: 40042129 DOI: 10.1039/d4fo04400b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The Maillard reaction (MR, glycation) frequently occurs during processing of soy-based products widely consumed in Western diets. MR leads to the formation of a number of chemically different structures called Maillard reaction products (MRPs), which include early glycation products and advanced glycation end products (AGEs). AGEs/MRPs were shown to modulate the immune response by interaction with specific receptors expressed on immune cells, such as the receptor for advanced glycation end products (RAGE). However, the structure-function relationship of MRPs formed during soy processing in relation to binding to AGE receptors has not been well studied. The aim of the present study is to characterize the MRPs formed during different heating times of soy proteins (SP) with glucose by analyzing the biochemical changes and to relate them to the functional changes, including binding to AGE receptors and stimulating immune cells. Our results demonstrated time-dependent differences in the biochemical characteristics of glycated SP compared with heated SP, which could be attributed to the different stages of MR and the diversity of MRPs. Moreover, the formation of AGEs over time was positively correlated with binding capacity to AGE receptors. Additionally, stimulating peripheral blood adherent monocytes with glycated SP resulted in increased gene expression levels of pro-inflammatory cytokines (IL-1β, IL-8 and TNF-α) when compared to non-glycated SP, suggesting that the formed AGEs bind to and activate receptors, such as RAGE. Our findings highlight the importance of studying immunomodulation upon processing of SP, which may lead to optimisation of the processing conditions of soy based food products.
Collapse
Affiliation(s)
- Cresci-Anne Croes
- Department Cell Biology and Immunology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | - Daniela Briceno Noriega
- Department Cell Biology and Immunology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | - Harry Wichers
- Wageningen Food & Biobased Research, Wageningen University and Research Centre, The Netherlands
| | - Huub F J Savelkoul
- Department Cell Biology and Immunology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | - Janneke Ruinemans-Koerts
- Department Cell Biology and Immunology, Wageningen University and Research Centre, Wageningen, The Netherlands.
- Department of Clinical Chemistry and Hematology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Malgorzata Teodorowicz
- Department Cell Biology and Immunology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Hu SY, Lin W, Li WJ, Ding X, Zhao RF, Hu YJ. Molecular mechanism of enhancing antitumor activity through the interaction between monosaccharides and human serum albumin. Anal Bioanal Chem 2025; 417:251-263. [PMID: 39576312 DOI: 10.1007/s00216-024-05665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025]
Abstract
This study investigated the molecular mechanisms of the interactions between three antitumor active monosaccharides and human serum albumin (HSA) using spectroscopic and electrochemical analyses, supplemented by molecular docking simulations. The antitumor efficacy of these monosaccharides can be significantly enhanced by covalent drug coupling, while HSA, with its long half-life and low immunogenicity, provides new opportunities for the development of advanced antitumor drug delivery systems. The results showed that these monosaccharides effectively burst the fluorescence of HSA. Thermodynamic analysis revealed that Fucose undergoes a spontaneous, exothermic process that decreases entropy, while the binding of Mannose and Galactose is entropy-driven. Notably, the addition of these three monosaccharides slightly compacts the structure of HSA, stabilizing its transport and delivery in vivo, with the binding strength categorized as Fucose > Mannose > Galactose. These variations in binding constants explain the differences in efficacy and potential side effects in antitumor therapy. Further studies have shown that the interaction between monosaccharides and HSA improves drug stability and targeting, thereby enhancing antitumor activity. An in-depth study of these interactions may provide new insights into the design and optimization of antitumor drugs and the further development of novel antitumor therapies.
Collapse
Affiliation(s)
- Si-Yuan Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China
| | - Wen Lin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China
| | - Wen-Jie Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China
| | - Xin Ding
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China.
| | - Ru-Fang Zhao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China.
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China.
| |
Collapse
|
3
|
Croes CACC, Chrysanthou M, Hoppenbrouwers T, Wichers H, Keijer J, Savelkoul HFJ, Teodorowicz M. Diabetic Glycation of Human Serum Albumin Affects Its Immunogenicity. Biomolecules 2024; 14:1492. [PMID: 39766199 PMCID: PMC11673269 DOI: 10.3390/biom14121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Advanced glycation end-products (AGEs) are products of a non-enzymatic reaction between amino acids and reducing sugars. Glycated human serum albumin (HSA) increases in diabetics as a consequence of elevated blood glucose levels and glycating metabolites like methylglyoxal (MGO). The impact of different types of glycation on the immunomodulatory properties of HSA is poorly understood and is studied here. HSA was glycated with D-glucose, MGO, or glyoxylic acid (CML). Glycation-related biochemical changes were characterized using various biochemical methods. The binding of differentially glycated HSA to AGE receptors was determined with inhibition ELISAs, and the impact on inflammatory markers in macrophage cell line THP-1 and adherent monocytes isolated from human peripheral blood mononuclear cells (PBMCs) was studied. All glycation methods led to unique AGE profiles and had a distinct impact on protein structure. Glycation resulted in increased binding of HSA to the AGE receptors, with MGO modification showing the highest binding, followed by glucose and, lastly, CML. Additionally, modification of HSA with MGO led to the increased expression of pro-inflammatory markers in THP-1 macrophages and enhanced phosphorylation of NF-κB p65. The same pattern, although less prominent, was observed for HSA glycated with glucose and CML, respectively. An increase in pro-inflammatory markers was also observed in PBMC-derived monocytes exposed to all glycated forms of HSA, although HSA-CML led to a significantly higher inflammatory response. In conclusion, the type of HSA glycation impacts immune functional readouts with potential relevance for diabetes.
Collapse
Affiliation(s)
- Cresci-Anne C. C. Croes
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| | - Marialena Chrysanthou
- Department of Food Quality and Design, Wageningen University and Research Centre, 6708 WG Wageningen, The Netherlands; (M.C.); (T.H.)
- Department of Food Chemistry, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands;
| | - Tamara Hoppenbrouwers
- Department of Food Quality and Design, Wageningen University and Research Centre, 6708 WG Wageningen, The Netherlands; (M.C.); (T.H.)
- Department of Food and Biobased Research, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Harry Wichers
- Department of Food Chemistry, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands;
- Department of Food and Biobased Research, Wageningen University and Research Centre, 6700 AA Wageningen, The Netherlands
| | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands;
| | - Huub F. J. Savelkoul
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| | - Malgorzata Teodorowicz
- Department of Cell Biology and Immunology, Wageningen University and Research Centre, 6700 AH Wageningen, The Netherlands (M.T.)
| |
Collapse
|
4
|
Sultana R, Parveen A, Kang MC, Hong SM, Kim SY. Glyoxal-derived advanced glycation end products (GO-AGEs) with UVB critically induce skin inflammaging: in vitro and in silico approaches. Sci Rep 2024; 14:1843. [PMID: 38246969 PMCID: PMC10800344 DOI: 10.1038/s41598-024-52037-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Advanced glycation end products (AGEs) have potential implications on several diseases including skin inflammation and aging. AGEs formation can be triggered by several factors such as UVB, glyoxal and methylglyoxal etc. However, little attention has been paid to glyoxal-derived AGEs (GO-AGEs) and UVB-induced skin inflammaging, with none have investigated together. This study aimed to investigate the possible role of GO-AGEs and UVB in skin inflammaging focusing on revealing its molecular mechanisms. The effects of GO-AGEs in the presence or absence of UVB were studied by using enzyme linked immunosorbent assay, western blotting, qPCR, flow cytometry and in silico approaches. In HaCaT cells, GO-AGEs in the presence of UVB irradiation (125 mJ/cm2) dramatically enhanced the release of different pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) with further activation of RAGE signaling pathways (NF-κB, COX 2, and IL- 1β) and increased oxidative stress also noticed in NHEK cells. In NHDF cells, extracellular matrix disruption noted via increasing matrix metalloproteinase release and decreasing collagen type 1 and SIRT1 expression. Besides that, the docking scores obtained from the molecular docking study support the above-mentioned results. This study strongly suggests the pivotal role of GO-AGEs in skin inflammaging and illuminates novel molecular pathways for searching most effective and updated anti-aging therapy.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
- Department of Life Science, University of Seoul, Seoul, 02504, Korea
| | - Amna Parveen
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea
| | - Min-Cheol Kang
- MetaCen Therapeutics Company, # Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Seong-Min Hong
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea.
- Gachon Institute of Pharmaceutical Science, Gachon University, #191, Hambakmoe-ro, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
5
|
Lupu L, Kleinekofort W, Morgner N. Epitope characterization of proteins and aptamers with mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:359-369. [PMID: 37957929 DOI: 10.1177/14690667231208530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The way in which professor Michael Przybylski has combined the spirit of research with entrepreneurship has set an example for any and all scientists. He has made significant achievements in the fields of mass spectrometry, biochemistry and medicine, and has initiated important technological developments in the area of protein analysis. Between 2016 and 2023 professor Przybylski's scientific focus shifted on protein interactions with emphasis on aptamer-protein and antibody-protein analysis. This review focuses on professor Przybylski's achievements in the last few years highlighting his impact on the scientific community, on his students and colleagues.
Collapse
Affiliation(s)
- Loredana Lupu
- AffyMSLifeChem Centre for Analytical Biochemistry and Biomedical Mass Spectrometry, Rüsselsheim am Main, Germany
| | | | - Nina Morgner
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt am Main, Frankfurt Am Main, Germany
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
7
|
Kumari N, Bandyopadhyay D, Kumar V, Venkatesh DB, Prasad S, Prakash S, Krishnaswamy PR, Balaram P, Bhat N. Glycation of albumin and its implication in Diabetes: A comprehensive analysis using mass spectrometry. Clin Chim Acta 2021; 520:108-117. [PMID: 34089724 DOI: 10.1016/j.cca.2021.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/09/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022]
Abstract
AIM To understand the mechanism of glycation of albumin and effects on cysteinylation and methionine oxidation. METHODS The in vitro glycation of HSA and BSA was studied with varying concentrations of glucose. Clinical blood samples of diabetic subjects with varying HbA1c values, were analyzed to assess in vivo glycation. All samples and their tryptic digests were analyzed using liquid chromatography/mass spectrometry. Glycation sites were mapped on to the three-dimensional structure of the HSA and BSA. RESULTS A total thirty-one sites for glycation and eight sites of Nε-carboxymethyl-lysine (CML) modification were identified on albumin. The site selectivity of glycation was correlated with the environment of the reactive residue in the three-dimensional structure. CONCLUSIONS The maximum percentage glycation under extreme conditions was in the range of ~55 to 88% in four weeks. Two major glycation sites K-233 and K-525 were identified, which together accounted for 40-50% of total glycation. A correlation was observed between glycation and oxidation of methionine residues in samples glycated in vitro. The role of spatially proximate residues in facilitating the glycation process is evident. The tri- and tetra-glycated isoforms of albumin can serve as biomarkers for the severe uncontrolled diabetic state.
Collapse
Affiliation(s)
- Namita Kumari
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| | - Debarati Bandyopadhyay
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India; Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Kumar
- PathShodh Healthcare Pvt. Ltd, Bengaluru 560094, India
| | - D B Venkatesh
- Anand Diagnostic Laboratory, Bengaluru 560001, India
| | - Sujay Prasad
- Anand Diagnostic Laboratory, Bengaluru 560001, India
| | - Sunita Prakash
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - P R Krishnaswamy
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - P Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India; National Centre for Biological Sciences, Bengaluru 560065, India
| | - Navakanta Bhat
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
8
|
Giglio RV, Lo Sasso B, Agnello L, Bivona G, Maniscalco R, Ligi D, Mannello F, Ciaccio M. Recent Updates and Advances in the Use of Glycated Albumin for the Diagnosis and Monitoring of Diabetes and Renal, Cerebro- and Cardio-Metabolic Diseases. J Clin Med 2020; 9:3634. [PMID: 33187372 PMCID: PMC7697299 DOI: 10.3390/jcm9113634] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is a heterogeneous and dysmetabolic chronic disease in which the laboratory plays a fundamental role, from diagnosis to monitoring therapy and studying complications. Early diagnosis and good glycemic control should start as early as possible to delay and prevent metabolic and cardio-vascular complications secondary to this disease. Glycated hemoglobin is currently used as the reference parameter. The accuracy of the glycated hemoglobin dosage may be compromised in subjects suffering from chronic renal failure and terminal nephropathy, affected by the reduction in the survival of erythrocytes, with consequent decrease in the time available for glucose to attach to the hemoglobin. In the presence of these renal comorbidities as well as hemoglobinopathies and pregnancy, glycated hemoglobin is not reliable. In such conditions, dosage of glycated albumin can help. Glycated albumin is not only useful for short-term diagnosis and monitoring but predicts the risk of diabetes, even in the presence of euglycemia. This protein is modified in subjects who do not yet have a glycemic alteration but, as a predictive factor, heralds the risk of diabetic disease. This review summarizes the importance of glycated albumin as a biomarker for predicting and stratifying the cardiovascular risk linked to multiorgan metabolic alterations.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90121 Palermo, Italy; (R.V.G.); (B.L.S.); (L.A.); (G.B.)
| | - Bruna Lo Sasso
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90121 Palermo, Italy; (R.V.G.); (B.L.S.); (L.A.); (G.B.)
- Department of Laboratory Medicine, University Hospital Paolo Giaccone, 90127 Palermo, Italy
| | - Luisa Agnello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90121 Palermo, Italy; (R.V.G.); (B.L.S.); (L.A.); (G.B.)
| | - Giulia Bivona
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90121 Palermo, Italy; (R.V.G.); (B.L.S.); (L.A.); (G.B.)
- Department of Laboratory Medicine, University Hospital Paolo Giaccone, 90127 Palermo, Italy
| | - Rosanna Maniscalco
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University Carlo Bo of Urbino, 61029 Urbino, Italy; (R.M.); (D.L.)
| | - Daniela Ligi
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University Carlo Bo of Urbino, 61029 Urbino, Italy; (R.M.); (D.L.)
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University Carlo Bo of Urbino, 61029 Urbino, Italy; (R.M.); (D.L.)
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90121 Palermo, Italy; (R.V.G.); (B.L.S.); (L.A.); (G.B.)
- Department of Laboratory Medicine, University Hospital Paolo Giaccone, 90127 Palermo, Italy
| |
Collapse
|