1
|
Hamid Z, Meyrick BK, Macleod J, Heath EA, Blaxland J. The application of ozone within the food industry, mode of action, current and future applications, and regulatory compliance. Lett Appl Microbiol 2024; 77:ovae101. [PMID: 39462123 DOI: 10.1093/lambio/ovae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
The food industry faces numerous challenges today, with the prevention and reduction of microbial contamination being a critical focus. While traditional chemical-based methods are effective and widely used, rising energy costs, the development of microbial tolerances, and growing awareness of the ecological impact of chemical biocides have renewed interest in novel biocides. Ozone, in both its gaseous and aqueous forms, is recognized as a potent disinfectant against bacteria, viruses, and fungi due to its high oxidation potential. Our review highlights several studies on the applications of ozone within the food industry, including its use for surface and aerosol disinfection and its capacity to reduce viable Listeria monocytogenes, a pertinent foodborne pathogen harbouring environmental and biocide stress tolerances and biofilm former. We also explore the use of ozone in food treatment and preservation, specifically on blueberries, apples, carrots, cabbage, and cherry tomatoes. While ozone is an effective disinfectant, it is important to consider material incompatibility, and the risks associated with prolonged human exposure to high concentrations. Nevertheless, for certain applications, ozone proves to be an efficacious and valuable alternative or complementary method for microbial control. Compliance with the biocide products regulation will require ozone device manufacturers to produce proven efficacy and safety data in line with British standards based on European standards (BS EN), and researchers to propose adaptations to account for ozone's unique properties.
Collapse
Affiliation(s)
- Zak Hamid
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - Ben K Meyrick
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - Joshua Macleod
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - Emily A Heath
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - James Blaxland
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| |
Collapse
|
2
|
Chirumbolo S, Valdenassi L, Tirelli U, Pandolfi S, Franzini M. The use of the medical ozone in the immune challenge of multidrug resistant (MDR) bacteria and the role of mitochondria. Microbes Infect 2024; 26:105242. [PMID: 38380603 DOI: 10.1016/j.micinf.2023.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 02/22/2024]
Affiliation(s)
| | - Luigi Valdenassi
- Italian Scientific Society in Oxygen Ozone Therapy (SIOOT), Bergamo, Italy
| | | | - Sergio Pandolfi
- Italian Scientific Society in Oxygen Ozone Therapy (SIOOT), Bergamo, Italy
| | - Marianno Franzini
- Italian Scientific Society in Oxygen Ozone Therapy (SIOOT), Bergamo, Italy.
| |
Collapse
|
3
|
Boublin F, Cabassa-Hourton C, Leymarie J, Leitao L. Potential involvement of proline and flavonols in plant responses to ozone. ENVIRONMENTAL RESEARCH 2022; 207:112214. [PMID: 34662576 DOI: 10.1016/j.envres.2021.112214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Ozone is considered to be a major phytotoxic pollutant. It is an oxidizing molecule with harmful effects that can affect human health and vegetation. Due to its phytotoxicity, it constitutes a threat to food security in a context of climate change. Proline accumulation is induced in response to numerous stresses and is assumed to be involved in plant antioxidant defense. We therefore addressed the question of the putative involvement of proline in plant ozone responses by analyzing the responses of two Arabidopsis mutants (obtained in the Col-0 genetic background) altered in proline metabolism and different ecotypes with various degrees of ozone sensitivity, to controlled ozone treatments. Among the mutants, the p5cs1 mutant plants accumulated less proline than the double prodh1xprodh2 (p1p2) mutants. Ozone treatments did not induce accumulation of proline in Col-0 nor in the mutant plants. However, the variation of the photosynthetic parameter Fv/Fm in the p1p2 mutant suggests a positive effect of proline. Proline accumulation induced by ozone was only observed in the most ozone-sensitive ecotypes, Cvi-0 and Ler. Contrary to our expectations, proline accumulation could not be correlated with variations in protein oxidation (carbonylation). On the other hand, flavonols content, measured here, using non-destructive methods, reflected exactly the genotypes ranking according to ozone sensitivity.
Collapse
Affiliation(s)
- Fanny Boublin
- Univ Paris Est Creteil, CNRS, INRAE, IRD, Sorbonne Université, Université de Paris, Institut d'Ecologie et des Sciences de L'Environnement de Paris, IEES-Paris, F-94010, Creteil, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d'Ecologie et des Sciences de L'Environnement de Paris, IEES, Paris, F-75005, Paris, France
| | - Juliette Leymarie
- Univ Paris Est Creteil, CNRS, INRAE, IRD, Sorbonne Université, Université de Paris, Institut d'Ecologie et des Sciences de L'Environnement de Paris, IEES-Paris, F-94010, Creteil, France.
| | - Luis Leitao
- Univ Paris Est Creteil, CNRS, INRAE, IRD, Sorbonne Université, Université de Paris, Institut d'Ecologie et des Sciences de L'Environnement de Paris, IEES-Paris, F-94010, Creteil, France
| |
Collapse
|
4
|
Schwarze J, Koc J, Koschitzki F, Gardner H, Hunsucker KZ, Swain GW, Rosenhahn A. Reduction of biofilm accumulation by constant and alternating potentials in static and dynamic field experiments. BIOFOULING 2022; 38:119-130. [PMID: 35240893 DOI: 10.1080/08927014.2022.2027923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The application of electric fields to conductive coatings is an environmentally friendly way to reduce biofilm formation. In particular alternating potentials (APs) have received increasing attention in recent studies. Here, an electrochemical rotating disk setup for dynamic field exposure experiments was developed to study how APs alter the attachment of fouling organisms in a multispecies ocean environment. A specific focus of the device design was proper integration of the potentiostat in the strongly corroding saltwater environment. The effect of APs on the accumulation of fouling organisms in short term field exposures was studied. Potentials on conductive gold surfaces were periodically switched between -0.3 V and 0.3 V or between -0.8 V and 0.6 V at a frequency of 0.5 Hz. APs were capable of significantly reducing the attachment of marine fouling organisms compared with the conductive samples immersed at open circuit potentials.
Collapse
Affiliation(s)
- Jana Schwarze
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Florian Koschitzki
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Harrison Gardner
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, USA
| | - Kelli Z Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, USA
| | - Geoffrey W Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, USA
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Schwarze J, Schuhmann W, Rosenhahn A. Control of Marine Bacteria and Diatom Biofouling by Constant and Alternating Potentials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7464-7472. [PMID: 34100615 DOI: 10.1021/acs.langmuir.1c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The application of electrochemical potentials to surfaces is an easy and direct way to alter surface charge density, the structure of the electrochemical double layer, and the presence of electrochemically activated species. On such electrified interfaces the formation of biofilms is reduced. Here we investigate how applied potentials alter the colonization of surfaces by the marine bacterium Cobetia marina and the marine diatom Navicula perminuta. Different constant potentials between -0.8 and 0.6 V as well as regular switching between two potentials were investigated, and their influence on the attachment of the two biofilm-forming microorganisms on gold-coated working electrodes was quantified. Reduced bacteria and diatom attachment were found when negative potentials and alternating potentials were applied. The results are discussed on the basis of the electrochemical processes occurring at the working electrode in artificial seawater as revealed by cyclic voltammetry.
Collapse
Affiliation(s)
- Jana Schwarze
- Analytical Chemistry - Faculty of Chemistry and Biochemistry, Biointerfaces, Ruhr University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electroanalytical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Faculty of Chemistry and Biochemistry, Biointerfaces, Ruhr University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| |
Collapse
|
6
|
Fasnacht M, Polacek N. Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology. Front Mol Biosci 2021; 8:671037. [PMID: 34041267 PMCID: PMC8141631 DOI: 10.3389/fmolb.2021.671037] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Ever since the "great oxidation event," Earth's cellular life forms had to cope with the danger of reactive oxygen species (ROS) affecting the integrity of biomolecules and hampering cellular metabolism circuits. Consequently, increasing ROS levels in the biosphere represented growing stress levels and thus shaped the evolution of species. Whether the ROS were produced endogenously or exogenously, different systems evolved to remove the ROS and repair the damage they inflicted. If ROS outweigh the cell's capacity to remove the threat, we speak of oxidative stress. The injuries through oxidative stress in cells are diverse. This article reviews the damage oxidative stress imposes on the different steps of the central dogma of molecular biology in bacteria, focusing in particular on the RNA machines involved in transcription and translation.
Collapse
Affiliation(s)
- Michel Fasnacht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|