1
|
Xu S, Shao D, Wang J, Zheng X, Yang Z, Wang A, Chen Z, Gao Y. Pre-ligand-induced porous MOF as a peroxidase mimic for electrochemical analysis of deoxynivalenol (DON). Food Chem 2025; 480:143860. [PMID: 40112717 DOI: 10.1016/j.foodchem.2025.143860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Developing convenient and sensitive vomitoxin detection methods is crucial to prevent human health risks from excess deoxynivalenol (DON) in food products. This study synthesized porous electrochemical nanomaterial calcined PA-NH2-MIL-101 (CPNM) with abundant amino group modifications using a palmitic acid (PA) pre-ligand and amino functionalization scheme. PA-induced defect generation and which formed a high-stability porous structure that increased the peroxidase-like catalytic active site and thus improving electrochemical analytical performance. In addition, introducing amino groups in CPNM facilitated the covalent immobilization of DON antibodies. Therefore, an electrochemical immunosensing platform for detecting DON was developed by utilizing the electrocatalytic signals generated by Fe-MOF (MIL-101) nanozymes and thionine molecules. The proposed sensor showed a large linear range of 10-107 pg mL-1 with a detection limit of 9.6 pg mL-1 (S/N = 3) under optimized optimal conditions. Consequently, this innovative electrochemical immunosensing technique based on CPNM nanozymes paves the way for DON detection in food.
Collapse
Affiliation(s)
- Suhui Xu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Dan Shao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Jiamin Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xiangfeng Zheng
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhenquan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Aijian Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhiyan Chen
- School of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yajun Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
2
|
Li Y, Lv X, Jiang H, Li X, Deng Y. Integration of RCA-Based DNA Nanoscaffold with Target Triggered RNA-Cleaving DNAzyme for Sensitive Detection of miRNA21. Appl Biochem Biotechnol 2024; 196:8925-8939. [PMID: 39083195 DOI: 10.1007/s12010-024-05022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/04/2025]
Abstract
Cascaded amplification showed promising potential for detection of trace target miRNAs in molecular diagnosis and prevention of many diseases. In this study, miRNA21 was chosen as the target, and rolling circle amplification (RCA)-based DNA nanoscaffold was integrated with target triggered RNA-cleaving DNAzyme for sensitive detection of miRNA21. That is, the H1 probe was bound with the long-chain product of RCA to self-assemble into DNA nanoscaffold. Target miRNA21 triggered the hybridization chain reaction (HCR) located on the nanoscaffold, and led to rapid proximity of DNAzyme fragments modified at both ends of the H2 probe, which realized the cyclic cleavage of self-quenching substrate probe efficiently, and the fluorescence signal was restored. The results demonstrated that the proposed assay was sensitive, 0.76 pM of miRNA21 can be detected. The proposed assay was specific; only one-base mismatched miRNA21 can be effectively recognized, other nucleic acid sequence and the serum matrix did not cause any interference. The proposed assay was accurate; recoveries from 82.1 to 115.0% can be obtained in the spiked fetal bovine serum (FBS). The flexible and programmable characteristics of DNA nanoscaffold and DNAzyme provide a confident and robust strategy for more sensitive nucleic acid detection, and can be developed to be a universal sensing platform for detecting other miRNAs just needing modification on the corresponding sequence of H1 probe in HCR.
Collapse
Affiliation(s)
- Yuan Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Liu L, Chang Y, Ji X, Chen J, Zhang M, Yang S. Surface-tethered electrochemical biosensor for telomerase detection by integration of homogeneous extension and hybridization reactions. Talanta 2023; 253:123597. [PMID: 35710468 DOI: 10.1016/j.talanta.2022.123597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/02/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
The general electrochemical biosensors for telomerase detection require the immobilization of primers on the electrode surface for telomeric extension and hybridization reactions. However, immobilization of primers may suffer from the challenges of hindrance effect and configuration freedom, thus reducing the extension and hybridization efficiency. Herein, we developed a sensitive electrochemical biosensor for telomerase detection by integration of homogeneous extension and hybridization reactions and surface-tethered detection. In the presence of telomerase, the biotinylated primer (bio-primer) was efficiently elongated with telomeric repeats of (TTAGGG)n at the 3' end in solution. Then, the extension product (bio-DNA) was hybridized with the signal probe DNA modified on the surface of ferrocene (Fc)-capped gold nanoparticle (AuNP). The bio-DNA/DNA/Fc-AuNP hybrids were then tethered by streptavidin-modified electrodes through the specific avidin-biotin interactions, thus producing strong electrochemical signals from the oxidation of Fc tags. The biosensor was successfully used to determine telomerase in HeLa cells and monitor the inhibition efficiency of inhibitor. A wide linear range for the detection of telomerase extracted from HeLa cells was attained. This method has great potential in clinical diagnosis and anti-cancer drug development, and should be beneficial for the fabrication of novel biosensors by integration of homogeneous catalysis and hybridization reactions.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; School of Chemistry and Materials Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xingyue Ji
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Jiayu Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Mengyu Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Suling Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| |
Collapse
|
4
|
Gao J, Liu L, Liu A, He Y, Yi X, Wang J. Ratiometric electrochemical detection of miRNA based on DNA nanomachines and strand displacement reaction. Mikrochim Acta 2022; 189:133. [PMID: 35243544 DOI: 10.1007/s00604-022-05240-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) play an important role in regulating gene expression in cells. Abnormal expression of miRNAs has been associated with a variety of diseases. A ratiometric electrochemical method for miRNA detection based on DNA nanomachines and strand displacement reaction was developed. Signal probe with ferrocene label and reference probe with methylene blue label were immobilized on gold nanoparticle (AuNP)-coated magnetic microbeads (AuNP-MMBs). The miRNA triggers the strand displacement reaction and forms a duplex with the protect probe, releasing one end of the DNA walker (DW); the released DW hybridizes with the ferrocene (Fc)-labeled signal probe. The signal probe detached from AuNP-MMBs upon cleavage of the Nb.BbvCI enzyme. The oxidation peak of MB moieties on the reference probe remains unchanged and the signals of Fc moieties on the signal probe are inversely proportional to the concentrations of miRNA. The ratio between Fc moieties at 0.35 V and MB moieties at -0.22 V (vs. Ag/AgCl) was used to quantify the expression level of miRNA with a detection limit down to 0.12 fM. The ratiometric assay possesses a strong ability to eliminate interference from environmental changes, thus offering the high selectivity of miRNA from the complexed biosystems, holding great significance for miRNA sensing. A ratiometric assay with high selectivity of miRNA has been developed based on DNA nanomachines and strand displacement reaction.
Collapse
Affiliation(s)
- Juan Gao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Aiqun Liu
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yuhan He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China.
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| |
Collapse
|