1
|
Yang J, Sun W, Sun M, Cui Y, Wang L. Current Research Status of Azaspiracids. Mar Drugs 2024; 22:79. [PMID: 38393050 PMCID: PMC10890026 DOI: 10.3390/md22020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The presence and impact of toxins have been detected in various regions worldwide ever since the discovery of azaspiracids (AZAs) in 1995. These toxins have had detrimental effects on marine resource utilization, marine environmental protection, and fishery production. Over the course of more than two decades of research and development, scientists from all over the world have conducted comprehensive studies on the in vivo metabolism, in vitro synthesis methods, pathogenic mechanisms, and toxicology of these toxins. This paper aims to provide a systematic introduction to the discovery, distribution, pathogenic mechanism, in vivo biosynthesis, and in vitro artificial synthesis of AZA toxins. Additionally, it will summarize various detection methods employed over the past 20 years, along with their advantages and disadvantages. This effort will contribute to the future development of rapid detection technologies and the invention of detection devices for AZAs in marine environmental samples.
Collapse
Affiliation(s)
| | | | | | | | - Lianghua Wang
- Basic Medical College, Naval Medical University, Shanghai 200433, China; (J.Y.); (W.S.); (M.S.); (Y.C.)
| |
Collapse
|
2
|
Barbosa M, Costa PR, David H, Lage S, Amorim A. Effect of temperature on growth and yessotoxin production of Protoceratium reticulatum and Lingulodinium polyedra (Dinophyceae) isolates from the Portuguese coast (NE Atlantic). MARINE ENVIRONMENTAL RESEARCH 2024; 194:106321. [PMID: 38159409 DOI: 10.1016/j.marenvres.2023.106321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The dinoflagellates Protoceratium reticulatum and Lingulodinium polyedra are potential yessotoxin (YTX) producers, which have been associated with blooms responsible for economic, social, and ecological impacts around the world. They occur in Iberian waters, but in this region, little is known of their ecophysiology and toxin profiles. This study investigated the growth and toxin production of two strains of each species, from the Portuguese coast, at 15 °C, 19 °C, and 23 °C. Growth curves showed higher growth rates at 19 °C, for both species. YTX and three analogs (homo YTX; 45-OH YTX; 45-OH homo YTX) were investigated by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS), and the presence of other analogs was investigated by Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS). No evidence of toxin production was found in L. polyedra. By contrast, YTX and 45,55-diOH-YTX were detected in both strains of P. reticulatum. These results confirm P. reticulatum as a source of yessotoxins along the Portuguese coast and add to the observed high intraspecific variability on YTX production of both species, at a global scale.
Collapse
Affiliation(s)
- Miguel Barbosa
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Pedro Reis Costa
- IPMA - Portuguese Institute for the Sea and Atmosphere, 1749-077, Lisboa, Portugal; S2AQUA - Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, 8700-194, Olhão, Portugal; Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Helena David
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Sandra Lage
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Ana Amorim
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| |
Collapse
|
3
|
Samdal IA, Sandvik M, Vu J, Sukenthirarasa MS, Kanesamurthy S, Løvberg KLE, Kilcoyne J, Forsyth CJ, Wright EJ, Miles CO. Preparation and characterization of an immunoaffinity column for the selective extraction of azaspiracids. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1207:123360. [PMID: 35839625 DOI: 10.1016/j.jchromb.2022.123360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022]
Abstract
The presence of azaspiracids (AZAs) in shellfish may cause food poisoning in humans. AZAs can accumulate in shellfish filtering seawater that contains marine dinoflagellates such as Azadinium and Amphidoma spp. More than 60 AZA analogues have been identified, of which AZA1, AZA2 and AZA3 are regulated in Europe. Shellfish matrices may complicate quantitation by ELISA and LC-MS methods. Polyclonal antibodies have been developed that bind specifically to the C-26-C-40 domain of the AZA structure and could potentially be used for selectively extracting compounds containing this substructure. This includes almost all known analogues of AZAs, including AZA1, AZA2 and AZA3. Here we report preparation of immunoaffinity chromatography (IAC) columns for clean-up and concentration of AZAs. The IAC columns were prepared by coupling polyclonal anti-AZA IgG to CNBr-activated sepharose. The columns were evaluated using shellfish extracts, and the resulting fractions were analyzed by ELISA and LC-MS. The columns selectively bound over 300 ng AZAs per mL of gel without significant leakage, and did not retain the okadaic acid, cyclic imine, pectenotoxin and yessotoxin analogues that were present in the applied samples. Furthermore, 90-92% of the AZAs were recovered by elution with 90% MeOH, and the columns could be re-used without significant loss of performance.
Collapse
Affiliation(s)
- Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway.
| | - Morten Sandvik
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Jennie Vu
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; Oslo Metropolitan University, P.O. Box 4, St. Olavs plass, N-0130 Oslo, Norway
| | - Merii S Sukenthirarasa
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; Oslo Metropolitan University, P.O. Box 4, St. Olavs plass, N-0130 Oslo, Norway
| | - Sinthuja Kanesamurthy
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; Oslo Metropolitan University, P.O. Box 4, St. Olavs plass, N-0130 Oslo, Norway
| | | | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore H91 R673, County Galway, Ireland
| | - Craig J Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43220, United States
| | - Elliott J Wright
- Biotoxin Metrology, National Research Council of Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Christopher O Miles
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; Biotoxin Metrology, National Research Council of Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| |
Collapse
|
4
|
Kim YS, An HJ, Kim J, Jeon YJ. Current Situation of Palytoxins and Cyclic Imines in Asia-Pacific Countries: Causative Phytoplankton Species and Seafood Poisoning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4921. [PMID: 35457784 PMCID: PMC9026528 DOI: 10.3390/ijerph19084921] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
Among marine biotoxins, palytoxins (PlTXs) and cyclic imines (CIs), including spirolides, pinnatoxins, pteriatoxins, and gymnodimines, are not managed in many countries, such as the USA, European nations, and South Korea, because there are not enough poisoning cases or data for the limits on these biotoxins. In this article, we review unregulated marine biotoxins (e.g., PlTXs and CIs), their toxicity, causative phytoplankton species, and toxin extraction and detection protocols. Due to global warming, the habitat of the causative phytoplankton has expanded to the Asia-Pacific region. When ingested by humans, shellfish that accumulated toxins can cause various symptoms (muscle pain or diarrhea) and even death. There are no systematic reports on the occurrence of these toxins; however, it is important to continuously monitor causative phytoplankton and poisoning of accumulating shellfish by PlTXs and CI toxins because of the high risk of toxicity in human consumers.
Collapse
Affiliation(s)
- Young-Sang Kim
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju City 63243, Korea
- Marine Science Institute, Jeju National University, Jeju City 63333, Korea
| | - Hyun-Joo An
- Asia Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jaeseong Kim
- Water and Eco-Bio Corporation, Kunsan National University, Kunsan 54150, Korea
| | - You-Jin Jeon
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju City 63243, Korea
- Marine Science Institute, Jeju National University, Jeju City 63333, Korea
| |
Collapse
|
5
|
Wright EJ, Beach DG, McCarron P. Non-target analysis and stability assessment of reference materials using liquid Chromatography‒High-Resolution mass spectrometry. Anal Chim Acta 2022; 1201:339622. [DOI: 10.1016/j.aca.2022.339622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
|
6
|
Sandvik M, Miles CO, Løvberg KLE, Kryuchkov F, Wright EJ, Mudge EM, Kilcoyne J, Samdal IA. In Vitro Metabolism of Azaspiracids 1-3 with a Hepatopancreatic Fraction from Blue Mussels ( Mytilus edulis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11322-11335. [PMID: 34533950 DOI: 10.1021/acs.jafc.1c03831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Azaspiracids (AZAs) are a group of biotoxins produced by the marine dinoflagellates Azadinium and Amphidoma spp. that can accumulate in shellfish and cause food poisoning in humans. Of the 60 AZAs identified, levels of AZA1, AZA2, and AZA3 are regulated in shellfish as a food safety measure based on occurrence and toxicity. Information about the metabolism of AZAs in shellfish is limited. Therefore, a fraction of blue mussel hepatopancreas was made to study the metabolism of AZA1-3 in vitro. A range of AZA metabolites were detected by liquid chromatography-high-resolution tandem mass spectrometry analysis, most notably the novel 22α-hydroxymethylAZAs AZA65 and AZA66, which were also detected in naturally contaminated mussels. These appear to be the first intermediates in the metabolic conversion of AZA1 and AZA2 to their corresponding 22α-carboxyAZAs (AZA17 and AZA19). α-Hydroxylation at C-23 was also a prominent metabolic pathway, producing AZA8, AZA12, and AZA5 as major metabolites of AZA1-3, respectively, and AZA67 and AZA68 as minor metabolites via double-hydroxylation of AZA1 and AZA2, but only low levels of 3β-hydroxylation were observed in this study. In vitro generation of algal toxin metabolites, such as AZA3, AZA5, AZA6, AZA8, AZA12, AZA17, AZA19, AZA65, and AZA66 that would otherwise have to be laboriously purified from shellfish, has the potential to be used for the production of standards for analytical and toxicological studies.
Collapse
Affiliation(s)
- Morten Sandvik
- Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway
| | - Christopher O Miles
- Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
| | | | - Fedor Kryuchkov
- Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway
| | - Elliott J Wright
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
| | - Elizabeth M Mudge
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, County Galway H91 R673, Ireland
| | - Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway
| |
Collapse
|
7
|
Wilkins AL, Rundberget T, Sandvik M, Rise F, Knudsen BK, Kilcoyne J, Reguera B, Rial P, Wright EJ, Giddings SD, Boundy MJ, Rafuse C, Miles CO. Identification of 24- O-β-d-Glycosides and 7-Deoxy-Analogues of Okadaic Acid and Dinophysistoxin-1 and -2 in Extracts from Dinophysis Blooms, Dinophysis and Prorocentrum Cultures, and Shellfish in Europe, North America and Australasia. Toxins (Basel) 2021; 13:toxins13080510. [PMID: 34437381 PMCID: PMC8402559 DOI: 10.3390/toxins13080510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
Two high-mass polar compounds were observed in aqueous side-fractions from the purification of okadaic acid (1) and dinophysistoxin-2 (2) from Dinophysis blooms in Spain and Norway. These were isolated and shown to be 24-O-β-d-glucosides of 1 and 2 (4 and 5, respectively) by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and enzymatic hydrolysis. These, together with standards of 1, 2, dinophysistoxin-1 (3), and a synthetic specimen of 7-deoxy-1 (7), combined with an understanding of their mass spectrometric fragmentation patterns, were then used to identify 1–5, the 24-O-β-d-glucoside of dinophysistoxin-1 (6), 7, 7-deoxy-2 (8), and 7-deoxy-3 (9) in a range of extracts from Dinophysis blooms, Dinophysis cultures, and contaminated shellfish from Spain, Norway, Ireland, Canada, and New Zealand. A range of Prorocentrum lima cultures was also examined by liquid chromatography–high resolution tandem mass spectrometry (LC–HRMS/MS) and was found to contain 1, 3, 7, and 9. However, although 4–6 were not detected in these cultures, low levels of putative glycosides with the same exact masses as 4 and 6 were present. The potential implications of these findings for the toxicology, metabolism, and biosynthesis of the okadaic acid group of marine biotoxins are briefly discussed.
Collapse
Affiliation(s)
- Alistair L. Wilkins
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway; (A.L.W.); (T.R.); (M.S.)
- School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Thomas Rundberget
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway; (A.L.W.); (T.R.); (M.S.)
- Norwegian Institute for Water Research, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Morten Sandvik
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway; (A.L.W.); (T.R.); (M.S.)
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway;
| | - Brent K. Knudsen
- School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, County Galway H91 R673, Ireland;
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain; (B.R.); (P.R.)
| | - Pilar Rial
- Centro Oceanográfico de Vigo (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain; (B.R.); (P.R.)
| | - Elliott J. Wright
- Biotoxin Metrology, National Research Council, 1411 Oxford St., Halifax, NS B3H 3Z1, Canada; (E.J.W.); (S.D.G.); (C.R.)
| | - Sabrina D. Giddings
- Biotoxin Metrology, National Research Council, 1411 Oxford St., Halifax, NS B3H 3Z1, Canada; (E.J.W.); (S.D.G.); (C.R.)
| | - Michael J. Boundy
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand;
| | - Cheryl Rafuse
- Biotoxin Metrology, National Research Council, 1411 Oxford St., Halifax, NS B3H 3Z1, Canada; (E.J.W.); (S.D.G.); (C.R.)
| | - Christopher O. Miles
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431 Ås, Norway; (A.L.W.); (T.R.); (M.S.)
- Biotoxin Metrology, National Research Council, 1411 Oxford St., Halifax, NS B3H 3Z1, Canada; (E.J.W.); (S.D.G.); (C.R.)
- Correspondence:
| |
Collapse
|