1
|
Antherjanam S, Saraswathyamma B. A disposable voltammetric sensor for the determination of diphenylamine using modified pencil graphite electrode. ANAL SCI 2024; 40:163-174. [PMID: 37845602 DOI: 10.1007/s44211-023-00440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
This study reports the electrochemical monitoring and sensing of diphenylamine (DPA), an anti-scald agent on a modified pencil graphite electrode (PGE). DPA is also a potentially toxic environmental pollutant. A polymer of tyrosine synthesized by electrochemical process was utilized for the determination of DPA in real samples. The electrodes were characterized using IR, SEM, EDAX, AFM and EIS analyses. As far as we know, this is first time reporting the utilization of modified PGE via green approach for the monitoring of DPA. A dynamic linear range of 1.00-117.11 µM with a lower detection limit (LOD) of 0.7050 µM was showed by this sensor for the electrochemical quantification of DPA. The electrochemical oxidation of DPA on the modified sensor followed a mixed adsorption -diffusion controlled kinetics. The sensor also showed good anti-interference property for the determination of DPA in real samples. Furthermore, the developed sensor was applied for the selective sensing of DPA from real apple extracts with good recovery. The real sample analysis was validated with standard spectrophotometric method.
Collapse
Affiliation(s)
- Santhy Antherjanam
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India
| | - Beena Saraswathyamma
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India.
| |
Collapse
|
2
|
Khodari M, Hassan NZ, Mohamed AE, Rashed MN. Electrocatalytic Determination of the antibiotic Levofloxacin using modified carbon paste electrode with a poly‐murexide thin film voltammetrically. ELECTROANAL 2023; 35. [DOI: 10.1002/elan.202200431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
AbstractIn this work, a simple, cheap, sensitive, and selective modified carbon paste electrode is proposed for the electroanalytical determination of Levofloxacin (LEVO), the drug used to treat pneumonia caused by coronavirus. The electrochemical polymerization method was applied to create a thin poly‐murexide film (POMUR) on the bare carbon paste electrode (BCPE) surface to enhance its electrocatalytic activity. The peak current response of LEVO obtained by POMUR/CPE was increased by 14.2 μA compared to BCPE. Scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques were employed to characterize BCPE and POMUR/CPE. Under the optimal experimental circumstances, the prepared sensor was capable of determining LEVO with a low limit of detection (LOD) of 7.18 nM (S/N = 3) for a linear dynamic range of 25 – 1 × 103 nM utilizing differential pulse voltammetry (DPV). Moreover, the practical applicability of POMUR/CPE for determining LEVO in pharmaceutical formulations and biological samples (human serum) demonstrated high sensitivity and selectivity with a recovery of 95.08 – 100.5 %.
Collapse
Affiliation(s)
- M. Khodari
- Chemistry Department Faculty of science South Valley University Qena Egypt
| | - Nahla Z. Hassan
- Chemistry Department Faculty Of science Aswan University Aswan Egypt
| | - Adila E. Mohamed
- Chemistry Department Faculty Of science Aswan University Aswan Egypt
| | - M. N. Rashed
- Chemistry Department Faculty Of science Aswan University Aswan Egypt
| |
Collapse
|
4
|
Hu Z, Zhao P, Li J, Chen Y, Yang H, Zhao J, Dong J, Qi N, Yang M, Huo D, Hou C. Metal-organic framework-derived porous ternary ZnCo 2O 4 nanoplate arrays grown on carbon cloth for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4330-4337. [PMID: 36260019 DOI: 10.1039/d2ay01058e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks derived from ternary metal oxide directly grown on the conductive substrate have attracted great interest in electrochemical sensing. In this work, metal-organic framework-derived ternary ZnCo2O4 nanoplate arrays that were grown on carbon cloth (ZnCo2O4 NA/CC) are fabricated and applied for the electrochemical determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). Field emission scanning electron microscope (FESEM) reveals that a network-like CC substrate is covered with considerable nanoplate arrays, presenting a large specific area. X-ray photoelectron spectroscopy (XPS) demonstrates the nanoplate arrays to be composed of ZnCo2O4. Benefiting from the unique array morphology and ternary element composition, the ZnCo2O4 NA/CC shows desirable performances for simultaneous detection of AA, DA, and UA. The individual detection limits are 7.14 μM for AA, 0.25 μM for DA, and 0.33 μM for UA. Additionally, the ZnCo2O4 NA/CC is successfully applied for the quantitative determination of AA, DA, and UA in spiked serum samples, showing its great application potential.
Collapse
Affiliation(s)
- Zhikun Hu
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Yuanyuan Chen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Huisi Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Jiaying Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Na Qi
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China
| |
Collapse
|
6
|
Jiang M, Tian L, Su M, Cao X, Jiang Q, Huo X, Yu C. Real-time monitoring of 5-HT release from cells based on MXene hybrid single-walled carbon nanotubes modified electrode. Anal Bioanal Chem 2022; 414:7967-7976. [PMID: 36129526 DOI: 10.1007/s00216-022-04337-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Serotonin (5-HT) is an essential inhibitory neurotransmitter in vivo that is critical for interneuronal communication of the nervous system. Herein, we constructed an electrochemical cell-sensing platform for 5-HT detection based on MXene/single-walled carbon nanotubes (SWCNTs) nanocomposite. The one-dimensional SWCNTs with good electrical conductivity are uniformly dispersed on the surface and intermediate layers of the two-dimensional MXene to form a tightly heterogeneous heterostructure. The synthesized MXene-SWCNTs could improve the stacking problem of MXene nanosheets and expose more active sites, effectively promoting the conductive properties and electrochemical activity of the composite. The fabricated MXene-SWCNTs/GCE possessed outstanding detection capability for 5-HT with a wide linear range of 4 nM-103.2 μM and a low detection limit of 1.5 nM. Moreover, the sensor was further applied for the real-time monitoring trace amount of 5-HT releasing from different cell lines, which confirmed its promising applications in 5-HT related physiological and pathological fields. MXene-SWCNTs/GCE was developed and applied for the real-time monitoring of trace amounts of 5-HT secreted from living cells.
Collapse
Affiliation(s)
- Mengyuan Jiang
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Liang Tian
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Mengjie Su
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Xiaoqing Cao
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Qiyu Jiang
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Xiaolei Huo
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Chunmei Yu
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China.
| |
Collapse
|