1
|
Bartwal G, Manivannan R, Son YA. Synergistic integration of a rhodamine-labelled tripeptide into AIE-active fluorogenic probe: Enabling nanomolar detection of Al 3+ ions through test strips, thin films, and Arduino-assisted optosensing platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124874. [PMID: 39096673 DOI: 10.1016/j.saa.2024.124874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
Peptide-fluorophore conjugates (PFCs) have been expeditiously utilized for metal ion recognition owing to their distinctive characteristics. Selective detection and quantification of aluminum is essential to minimize health and environmental risks. Herein, we report the synthesis and characterization of a new chemoprobe with aggregation-induced emission characteristics by chemically conjugating rhodamine-B fluorophore with a tripeptide. The probe revealed β-sheet secondary conformation in both solid and solution states, as confirmed by FT-IR, PXRD, and CD experiments. AIE characteristics of the probe in water-MeCN mixtures revealed the formation of spherically shaped nanoaggregates with an average size of 353 ± 7 nm, as confirmed by SEM, TEM, and DLS studies. The probe exhibited a large stokes shift (175 nm) and displayed selective colorimetric and fluorometric responses towards Al3+ ions with an extremely low detection limit (51 nm) and a fast response time (≤15 s). Comparative NMR studies confirmed the cleavage of spirolactam ring upon aluminum binding. The probe's practicality was enhanced through integration into test strips and thin films, allowing solid-phase detection of Al3+ ions. Furthermore, an RGB-Arduino enabled optosensing device has been developed to enable instant quantifiable analysis of aluminum concentrations in real-time conditions.
Collapse
Affiliation(s)
- Gaurav Bartwal
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Ramalingam Manivannan
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Young-A Son
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea.
| |
Collapse
|
2
|
Barzinmehr H, Mirza-Aghayan M, Heidarian M. Isatin-Schiff base functionalized graphene oxide as a highly selective turn-on fluorescent probe for the detection of Pd(II) via photoinduced electron transfer pathway. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123673. [PMID: 38198996 DOI: 10.1016/j.saa.2023.123673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 01/12/2024]
Abstract
We investigated the use of isatin-Schiff base functionalized graphene oxide (ISBGO) as a selective fluorescent chemosensor for the detection of palladium ions. Selectivity tests indicated that over 23 metal ions tested, ISBGO (λex = 340 nm, λem = 504 nm) showed the highest affinity for Pd(II), displaying a 10.1-fold enhancement. Also, interference tests proved that in the presence of both Pd(II) and other metal ions, there was still high fluorescence intensity and no considerable quenching occurred. According to DFT and TD-DFT calculations, photo-induced electron transfer (PET) is responsible for the turn-on response produced by the chemosensor. Coordination of Pd(II) with ISBGO in fact blocks PET from imine nitrogen of 3-iminoindolin-2-one moiety to the benzene ring, which in turn leads to a turn-on response. In addition, Job's plot analysis and Benesi-Hildebrand approach suggest that ISBGO preferably forms a 1:1 complex with Pd(II) with an association constant of 1.020 × 105 M-1. Moreover, FT-IR spectroscopy and DFT study showed that amide oxygen and imine nitrogen of 3-iminoindolin-2-one moiety acted as binding sites of ISBGO. High sensitivity, fast response, great degree of sensitivity, short life time, low detection limit of 32 nM combined with high association constant (Kf) of 1.020 × 105 M-1 and increased fluorescence quantum yield (Φf) of roughly 1.5-fold in the presence of Pd (II), highlight the role of ISBGO as an excellent probe for sensing Pd(II) in aqueous solution.
Collapse
Affiliation(s)
- Hamed Barzinmehr
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, TX 76798-7348, USA; Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. BOX 14335-186, Tehran, Iran
| | - Maryam Mirza-Aghayan
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. BOX 14335-186, Tehran, Iran.
| | - Maryam Heidarian
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. BOX 14335-186, Tehran, Iran
| |
Collapse
|
3
|
Lekbach Y, Ueki T, Liu X, Woodard T, Yao J, Lovley DR. Microbial nanowires with genetically modified peptide ligands to sustainably fabricate electronic sensing devices. Biosens Bioelectron 2023; 226:115147. [PMID: 36804664 DOI: 10.1016/j.bios.2023.115147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Nanowires have substantial potential as the sensor component in electronic sensing devices. However, surface functionalization of traditional nanowire and nanotube materials with short peptides that increase sensor selectivity and sensitivity requires complex chemistries with toxic reagents. In contrast, microorganisms can assemble pilin monomers into protein nanowires with intrinsic conductivity from renewable feedstocks, yielding an electronic material that is robust and stable in applications, but also biodegradable. Here we report that the sensitivity and selectivity of protein nanowire-based sensors can be modified with a simple plug and play genetic approach in which a short peptide sequence, designed to bind the analyte of interest, is incorporated into the pilin protein that is microbially assembled into nanowires. We employed a scalable Escherichia coli chassis to fabricate protein nanowires that displayed either a peptide previously demonstrated to effectively bind ammonia, or a peptide known to bind acetic acid. Sensors comprised of thin films of the nanowires amended with the ammonia-specific peptide had a ca. 100-fold greater response to ammonia than sensors made with unmodified protein nanowires. Protein nanowires with the peptide that binds acetic acid yielded a 4-fold higher response than nanowires without the peptide. The protein nanowire-based sensors had greater responses than previously reported sensors fabricated with other nanomaterials. The results demonstrate that protein nanowires with enhanced sensor response for analytes of interest can be fabricated with a flexible genetic strategy that sustainably eliminates the energy, environmental, and health concerns associated with other common nanomaterials.
Collapse
Affiliation(s)
- Yassir Lekbach
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Toshiyuki Ueki
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Xiaomeng Liu
- Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA, 01003, USA
| | - Trevor Woodard
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jun Yao
- Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA, 01003, USA; Institute for Applied Life Sciences (IALS),University of Massachusetts, Amherst, MA, 01003, USA; Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA; Institute for Applied Life Sciences (IALS),University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
4
|
Sharma S, Chayawan, Jayaraman A, Debnath J, Ghosh KS. Highly Selective Aminopyrazine‐Based Colorimetric Probe for “Naked‐Eye” Detection of Al
3+
: Experimental, Computational Studies and Applications in Molecular Logic Circuits. ChemistrySelect 2023. [DOI: 10.1002/slct.202203695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shivani Sharma
- Department of Chemistry National Institute of Technology Hamirpur Himachal Pradesh 177005 India
| | - Chayawan
- Department of Chemistry National Institute of Technology Hamirpur Himachal Pradesh 177005 India
| | - Adithyan Jayaraman
- School of Chemical and Biotechnology SASTRA Deemed to be University Thanjavur Tamilnadu 613401 India
| | - Joy Debnath
- Department of Chemistry SASTRA Deemed to be University Thanjavur Tamilnadu 613401 India
| | - Kalyan Sundar Ghosh
- Department of Chemistry National Institute of Technology Hamirpur Himachal Pradesh 177005 India
| |
Collapse
|
5
|
Unniram Parambil AR, P K, Silswal A, Koner AL. Water-soluble optical sensors: keys to detect aluminium in biological environment. RSC Adv 2022; 12:13950-13970. [PMID: 35558844 PMCID: PMC9090444 DOI: 10.1039/d2ra01222g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Metal ion plays a critical role from enzyme catalysis to cellular health and functions. The concentration of metal ions in a living system is highly regulated. Among the biologically relevant metal ions, the role and toxicity of aluminium in specific biological functions have been getting significant attention in recent years. The interaction of aluminium and the living system is unavoidable due to its high earth crust abundance, and the long-term exposure to aluminium can be fatal for life. The adverse Al3+ toxicity effects in humans result in various diseases ranging from cancers to neurogenetic disorders. Several Al3+ ions sensors have been developed over the past decades using the optical responses of synthesized molecules. However, only limited numbers of water-soluble optical sensors have been reported so far. In this review, we have confined our discussion to water-soluble Al3+ ions detection using optical methods and their utility for live-cell imaging and real-life application.
Collapse
Affiliation(s)
- Ajmal Roshan Unniram Parambil
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri 462066 Bhopal Madhya Pradesh India
- Department of Chemistry, University of Basel 4058 Basel Switzerland
- Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
| | - Kavyashree P
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri 462066 Bhopal Madhya Pradesh India
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri 462066 Bhopal Madhya Pradesh India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri 462066 Bhopal Madhya Pradesh India
| |
Collapse
|
6
|
Luo M, Li Q, Shen P, Hu S, Wang J, Wu Z, Su Z. Coumarin 1,4-enedione for selective detection of hydrazine in aqueous solution and fluorescence imaging in living cells. Anal Bioanal Chem 2021; 413:7541-7548. [PMID: 34783881 DOI: 10.1007/s00216-021-03719-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Hydrazine is a widely used but highly toxic chemical reagent, and the development of a fluorescent probe for hydrazine detection is very meaningful. In this study, a novel coumarin-derived fluorescent probe containing a 1,4-enedione moiety for hydrazine detection was developed. The recognition of hydrazine with the probe brings about obvious fluorescence enhancement over other environmentally relevant ions and amine-containing species. The limit of detection for hydrazine is 2.7×10-8 M in aqueous solution. The fluorescence enhancement was ascribed to the cyclization reaction of the 1,4-enedione moiety of the probe and hydrazine which form a six-membered pyridazine ring and intramolecular charge transfer (ICT) mechanism. The mass spectrometry (MS), nuclear magnetic resonance (NMR) analysis and theoretical calculations confirmed the recognition produced. The probe can be used to determine trace hydrazine in real water samples. More importantly, the probe also showed good potential in detecting hydrazine by imaging of living HeLa cells.
Collapse
Affiliation(s)
- Meiling Luo
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, Hubei, China
| | - Qiao Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, Hubei, China
| | - Ping Shen
- School of Biological Engineering, Wuhan Polytechnic, Wuhan, 430074, Hubei, China
| | - Shengli Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, Hubei, China.
| | - Junyu Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, Hubei, China
| | - Zhou Wu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, Hubei, China
| | - Zhenhong Su
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, Hubei, China.
| |
Collapse
|