1
|
Ghidotti M, Papoci S, Respaldiza A, Emteborg H, Ulberth F, de la Calle Guntiñas MB. Use of energy dispersive X-ray fluorescence to authenticate European wines with protected designation of origin. Challenges of a successful control system based on modelling. Food Chem 2025; 465:141989. [PMID: 39550975 PMCID: PMC11649527 DOI: 10.1016/j.foodchem.2024.141989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Consumers are willing to pay a higher price for food with geographical origin labels such as Protected Designation of Origin and Protected Geographical Indication. In this work, the elemental profile of wine obtained by XRF, combined with multivariate analyses, is used to authenticate 111 Croatian, Italian and Spanish red and white wines, 102 of them from 20 Protected Designations of Origin, reproducing the circumstances faced by control laboratories, using commercially available wines without traceability records. Wines that shared origin clustered together and separated from those of other regions following multivariate statistical tests. Classifications made using Soft Independent Modelling by Class Analogy were characterised by poor sensitivity and specificity. An alternative approach based on successive Partial Least Square Discriminant Analyses with consecutive classifications at country, region and finally, Protected Designation of Origin level, was developed and implemented with good accuracy results. In total, 88 % of the samples were correctly classified.
Collapse
Affiliation(s)
| | - Sergej Papoci
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | | - Håkan Emteborg
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Franz Ulberth
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | |
Collapse
|
2
|
Woldetsadik D, Sims DB, Garner MC, Hudson AC, Monk J, Braunersrither B, Adepa Sunshine WN, Warner-McRoy L, Vasani S. United States Grown and Imported Rice on Sale in Las Vegas: Metal(loid)s Composition and Geographic Origin Discrimination. Biol Trace Elem Res 2024; 202:3829-3839. [PMID: 37952013 DOI: 10.1007/s12011-023-03942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Concentrations of metal(loid)s, Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Se, Sr, V and Zn, were determined in rice on sale in Las Vegas. The rice samples were grown in five different countries, the USA, Thailand, India, Pakistan, and Bangladesh. The elemental concentrations in rice grain were determined using inductively coupled plasma mass spectrometry (ICP-MS) following hot block-assisted digestion. The accuracy of the laboratory procedure was verified by the analysis of rice flour standard reference material (NIST SRM 1568b). The mean metal(loid) contents in rice of various geographic origins were 3.18-5.91 mg kg-1 for Al, 0.05-0.12 mg kg-1 for As, 3.64-41 μg kg-1 for Cd, 5.11-12 μg kg-1 for Co, 0.12-0.14 mg kg-1 for Cr, 1.5-1.91 mg kg-1 for Cu, 3.04-4.98 mg kg-1 for Fe, 4.2-10.4 mg kg-1 for Mn, 0.21-0.41 mg kg-1 for Ni, 0.02-0.07 mg kg-1 for Se, 0.68-0.88 mg kg-1 for Sr, 3.64-5.26 μg kg-1 for V, and 16.6-19.9 mg kg-1 for Zn. respectively. The mean concentration of As in US rice was significantly higher than in Indian, Pakistani, and Bangladeshi rice. On the other hand, it was found a significantly low mean level of Cd in US-grown rice. It was also found that the concentrations of metal(loid)s in black and brown rice on sale in Las Vegas were statistically similar, except for Mn and Se. The geographic origin traceability of rice grain involved the use of ICP-MS analysis coupled with chemometrics that allowed their differentiation based on the rice metal(loid) profile, thus confirming their origins. Data were processed by linear discriminant analysis, and US and Thai rice samples were cross-validated with higher accuracy (100%). This authentication quickly discriminates US rice from the other regions and adds verifiable food safety measures for consumers.
Collapse
Affiliation(s)
- Desta Woldetsadik
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia.
- College of Southern Nevada, Las Vegas, Nevada, USA.
| | | | | | | | - Joshua Monk
- College of Southern Nevada, Las Vegas, Nevada, USA
| | | | | | | | | |
Collapse
|
3
|
Saifullah M, Nisar A, Akhtar R, M Husnain S, Imtiaz S, Ahmad B, Ahmed Shafique M, Butt S, Arif M, Majeed Satti A, Shahzad Ahmed M, Kelly SD, Siddique N. Identification of provenance of Basmati rice grown in different regions of Punjab through multivariate analysis. Food Chem 2024; 444:138549. [PMID: 38335678 DOI: 10.1016/j.foodchem.2024.138549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
High-priced Basmati rice is vulnerable to deliberate mislabeling to increase profits. This type of fraud may lower consumers' confidence as inferior products can affect brand reputation. To address this problem, there is a need to devise a method that can efficiently distinguish Basmati rice grown in regions that are famous versus the regions that are not suitable for their production. Therefore, in this investigation, thirty-six samples of Basmati rice were collected from two zones of Punjab province (one known for Basmati rice) of Pakistan which is the major producer of Basmati rice. The elemental composition of rice samples was assessed using inductively coupled plasma-optical emission spectrometry and an organic elemental analyzer, whereas data on δ13C was acquired using isotopic ratio-mass spectrometry. Regional clustering of samples based on their respective cultivation zones was observed using multivariate data analysis techniques. Partial least squares-discriminant analysis was found to be effective in grouping rice samples from the different locations and identifying unknown samples belonging to these two regions. Further recommendations are presented to develop a better model for tracing the origin of unidentified rice samples.
Collapse
Affiliation(s)
- Muhammad Saifullah
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan.
| | - Awais Nisar
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Ramzan Akhtar
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Syed M Husnain
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan.
| | - Shamila Imtiaz
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Bashir Ahmad
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Munib Ahmed Shafique
- Central Analytical Facility Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Saira Butt
- Isotope Application Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Muhammad Arif
- National Institute of Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Abid Majeed Satti
- Crop Sciences Institute (Rice Program), PARC-National Agriculture Research Center, 44000, Park Road, Islamabad, Pakistan
| | - Muhammad Shahzad Ahmed
- Crop Sciences Institute (Rice Program), PARC-National Agriculture Research Center, 44000, Park Road, Islamabad, Pakistan
| | - Simon D Kelly
- International Atomic Energy Agency, Vienna International Center, PO Box 100, Wagramer Strasse 5, 1400, Vienna, Austria
| | - Naila Siddique
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| |
Collapse
|
4
|
Ghidotti M, Papoci S, Pietretti D, Ždiniaková T, de la Calle Guntiñas MB. Use of elemental profiles determined by energy-dispersive X-ray fluorescence and multivariate analyses to detect adulteration in Ceylon cinnamon. Anal Bioanal Chem 2023; 415:5437-5449. [PMID: 37587311 PMCID: PMC10444698 DOI: 10.1007/s00216-023-04817-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
The price of Cinnamomum verum (Ceylon cinnamon) is around twice as high as that of the other cinnamon varieties commonly grouped under the name cassia cinnamon, making the former spice an attractive target for fraudsters. This work demonstrates that elemental profiles obtained by energy-dispersive X-ray fluorescence in combination with multivariate analyses can be used as a screening method to detect Ceylon cinnamon adulteration. Thirty-six elements were analysed in 52 commercially available cinnamon samples, 29 Ceylon, 8 cassia, and 15 for which no indication about variety was provided. Fifty-eight percent of the samples were either adulterated or did not meet international quality criteria. Four of the ground cinnamon samples labelled as Ceylon cinnamon were found to be pure cassia or a mixture with a high cassia content, and 26 samples were suspected of other types of adulteration including replacement of bark with other parts of the cinnamon tree. Headspace gas chromatography-mass spectrometry and ash determination by thermogravimetric analysis confirmed the conclusions reached by elemental analysis. Only one sample labelled as Ceylon cinnamon and that according to its volatile composition was cassia cinnamon was not flagged as suspicious by elemental analysis.
Collapse
Affiliation(s)
| | - Sergej Papoci
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | | | | | |
Collapse
|
5
|
Xing P, Luo H, He Z, He L, Zhao H, Tang X, Duan M. Trans-Zeatin induce regulation the biosynthesis of 2-acetyl-1-pyrroline in fragrant rice (Oryza sativa L.) seedlings. BMC PLANT BIOLOGY 2023; 23:88. [PMID: 36765297 PMCID: PMC9921689 DOI: 10.1186/s12870-023-04106-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In plants, cytokinin is activated into trans-zeatin to fight abiotic stresses. However, the mechanism of the effect of trans-zeatin on 2-acetyl-1-pyrroline (2-AP) biosynthesis in fragrant rice has yet to be studied. The present study was conducted to explore the effects of exogenous trans-zeatin on enzymes activities, genes expression, and precursors involved in 2-AP biosynthesis and 2-AP contents as well as the seedling quality of a fragrant rice cultivar viz., Meixiangzhan2. Four concentrations of trans-zeatin solutions at 20, 40, and 80 μmol L- 1 (ZT1, ZT2, and ZT3) were sprayed onto rice seedlings. RESULTS Compared to the control, trans-zeatin treatments showed significantly higher 2-AP contents of fragrant rice seedlings. Increased plant height and stem width were observed due to trans-zeatin treatments. The trans-zeatin application increased 1-pyrroline, methylglyoxal, proline, and P5C contents, enhanced P5CS and OAT activities, and reduced glutamic acid contents. In addition, expressions of ProDH, P5CS2, and DAO4 were comparatively higher under trans-zeatin treatments than CK in fragrant rice seedlings. CONCLUSIONS Overall, up-regulation of P5C, 1-pyrroline, and proline and down-regulation of glutamic acid under appropriate trans-zeatin concentrations (20 and 40 μmol L- 1) resulted in enhanced 2-AP biosynthesis in fragrant rice seedlings and 20-40 μmol L- 1 was considered as the suggested concentrations of trans-zeatin application in fragrant rice seedling.
Collapse
Affiliation(s)
- Pipeng Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Zhenzhen He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Longxin He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Hua Zhao
- Key Laboratory of Modern Biological Seed Industry in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China.
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Kukusamude C, Puripunyavanich V, Kongsri S. Combination of light stable isotopic and elemental signatures in Thai Hom Mali rice with chemometric analysis. Food Chem X 2023; 17:100613. [PMID: 36974187 PMCID: PMC10039222 DOI: 10.1016/j.fochx.2023.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
This study aims to discriminate the geographical origin of Thai Hom Mali rice in order to protect consumers from mislabeling. Stable isotopic and elemental compositions (δ13C, δ15N, δ18O, As, Br, K, Mn, Rb, and Zn) of Thai Hom Mali rice cultivated inside and outside the Thung Kula Rong-Hai Plain were combined with chemometric analysis, linear discriminant analysis (LDA) and partial least squares-discriminant analysis (PLS-DA). The 9 variables combined with LDA can distinguish Thai Hom Mali rice cultivated inside and outside the Thung Kula Rong-Hai Plain with 98.2 % correct classification and 94.6 % cross-validation. The efficiency in using stable isotopic and elemental compositions combined with soft PLS-DA was achieved 100 % in discrimination of Thai Hom Mali rice cultivated inside and outside the Thung Kula Rong-Hai Plain. The variables δ15N, Br, K, and Rb were key parameters to discriminate the geographical origin of Thai Hom Mali rice.
Collapse
|
7
|
Luo H, Duan M, Kong L, He L, Chen Y, Wang Z, Tang X. The Regulatory Mechanism of 2-Acetyl-1-Pyrroline Biosynthesis in Fragrant Rice ( Oryza sativa L.) Under Different Soil Moisture Contents. FRONTIERS IN PLANT SCIENCE 2021; 12:772728. [PMID: 34899799 PMCID: PMC8660968 DOI: 10.3389/fpls.2021.772728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
2-acetyl-1-pyrroline (2-AP) is the key compound of rice aroma. However, the responses of 2-AP biosynthesis in fragrant rice under different soil moisture and the corresponding mechanism are little known. The present study evaluated the effects of different soil moisture on 2-AP biosynthesis through a pot experiment. Four soil moisture contents, that is, 50% (SM50), 40% (SM40), 30% (SM30), and 20% (SM20), were adopted, and SM50 treatment was taken as control. The pots were weighed and watered to maintain the corresponding soil moisture content. The results showed no significant difference in growth parameters (plant height, stem diameter, and plant dry weight) among all treatments. Compared with SM50, SM40, SM30, and SM20 treatments significantly (p<0.05) increased 2-AP content by 32.81, 23.18, and 53.12%, respectively. Between 20 to 90% higher proline content was observed in SM40, SM30, and SM20 treatments than in SM50. Enzymes including proline dehydrogenase, ornithine transaminase, and 1-pyrroline-5-carboxylate synthetase exhibited lower activities with soil moisture declined. Higher diamine oxidase activity was observed in SM40, SM30, and SM20 treatments compared with SM50, and real-time PCR analyses showed that transcript level of DAO1 was greatly increased under low soil moisture treatments, especially in SM20 treatment. Transcript levels of PRODH, DAO2, DAO4, DAO5, OAT, P5CS1, and P5CS2 decreased or maintained in SM40, SM30, and SM20 treatments compared with SM50. We deduced that low soil moisture content enhanced 2-AP biosynthesis mainly by upregulating the expression of DAO1 to promote the conversion from putrescine to 2-AP.
Collapse
Affiliation(s)
- Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Leilei Kong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Longxin He
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Yulin Chen
- College of Natural Resources and Environment, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhimin Wang
- College of Engineering, South China Agricultural University, Guangzhou, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| |
Collapse
|