1
|
Zhou S, Zhu X, Song S, Sun M, Kuang H, Xu C, Guo L. Rapid and simultaneous detection of five mycotoxins and their analogs with a gold nanoparticle-based multiplex immuno-strip sensor. Food Microbiol 2024; 121:104510. [PMID: 38637074 DOI: 10.1016/j.fm.2024.104510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Mycotoxins, as secondary metabolites produced by fungi, have been the focus of researchers in various countries and are considered to be one of the major risk factors in agricultural products. There is an urgent need for a rapid, simple and high-performance method to detect residues of harmful mycotoxins in agricultural foods. We have developed a gold nanoparticle-based multiplexed immunochromatographic strip biosensor that can simultaneously detect fifteen mycotoxins in cereal samples. With this optimized procedure, five representative mycotoxins, deoxynivalenol (DON), zearalenone (ZEN), T-2 toxin (T-2), tenuazonic acid (TEA) and alternariol (AOH) were detected in the range of 0.91-4.77, 0.04-0.56, 0.11-0.68, 0.12-1.02 and 0.09-0.75 ng/mL, respectively. The accuracy and stability of these measurements were demonstrated by analysis of spiked samples with recoveries of 91.8%-115.3% and coefficients of variation <8.7%. In addition, commercially available samples of real cereals were tested using the strips and showed good agreement with the results verified by LC-MS/MS. Therefore, Our assembled ICA strips can be used for the simultaneous detection of 5 mycotoxins and their analogs (15 mycotoxins in total) in grain samples, and the results were consistent between different types of cereal foods, this multiplexed immunochromatographic strip biosensor can be used as an effective tool for the primary screening of mycotoxin residues in agricultural products.
Collapse
Affiliation(s)
- Shengyang Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaojun Zhu
- Jiangsu Product Quality Testing and Inspection Institute, Nanjing, Jiangsu, 210025, China
| | - Shanshan Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
2
|
Yang S, Wen D, Zheng F, Pu S, Chen Z, Chen M, Di B, Liu W, Shi Y. Simple and rapid detection of three amatoxins and three phallotoxins in human body fluids by UPLC-MS-MS and its application in 15 poisoning cases. J Anal Toxicol 2024; 48:44-53. [PMID: 37929913 DOI: 10.1093/jat/bkad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Amatoxins and phallotoxins are toxic cyclopeptides found in the genus Amanita and are among the predominant causes of foodborne sickness and poisoning-related fatalities in China. This study introduces and validates a simple, rapid and cost-effective ultra-performance liquid chromatography-mass spectrometry method for the simultaneous determination and quantification of α-amanitin, β-amanitin, γ-amanitin, phallisacin, phallacidin and phalloidin in human blood and urine. Quick therapeutic decision-making is supported by a 9 min chromatographic separation performed on a Waters Acquity UPLC HSS T3 column (100 mm × 2.1 mm, 1.8 µm) using a gradient of high-performance liquid chromatography (HPLC)-grade water and methanol:0.005% formic acid. The analyte limit of quantification was 1-3 ng/mL in blood and 0.5-2 ng/mL in urine. Calibrations curves, prepared by spiking drug-free blood and urine, demonstrated acceptable linearity with mean correlation coefficients (r) greater than 0.99 for all phallotoxins and amatoxins. Acceptable intraday and interday precision (relative standard deviation <15%) and accuracy (bias, -4.8% to 13.0% for blood and-9.0% to 14.7% for urine) were achieved. The validated method was successfully applied to analyze 9 blood samples and 2 urine samples testing positive for amatoxins and/or phallotoxins. Amatoxins and/or phallotoxins were identified in each whole blood sample at a range of 1.12-5.63 ng/mL and in two urine samples from 1.01-9.27 ng/mL. The method has the benefits of simple sample preparation (protein precipitation) and wide analyte coverage, making it suitable for emergency quantitative surveillance toxicological analysis in clinics and forensic poisoning practice.
Collapse
Affiliation(s)
- Shuo Yang
- Academy of Forensic science, Shanghai Key Laboratory of Forensic Medicine, No. 1347 Guangfuxi Road, Shanghai 200063, China
- School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 210009, China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, No. 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Fenshuang Zheng
- Affiliated Hospital of Yunnan University (Yunnan Second People's Hospital, Yunnan Eye Hospital), No. 176 Qingnian Road, Kunming 650021, China
| | - Shanbai Pu
- Affiliated Hospital of Yunnan University (Yunnan Second People's Hospital, Yunnan Eye Hospital), No. 176 Qingnian Road, Kunming 650021, China
| | - Zhuonan Chen
- Academy of Forensic science, Shanghai Key Laboratory of Forensic Medicine, No. 1347 Guangfuxi Road, Shanghai 200063, China
- School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 210009, China
| | - Mobing Chen
- Academy of Forensic science, Shanghai Key Laboratory of Forensic Medicine, No. 1347 Guangfuxi Road, Shanghai 200063, China
- School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 210009, China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 210009, China
| | - Wei Liu
- Academy of Forensic science, Shanghai Key Laboratory of Forensic Medicine, No. 1347 Guangfuxi Road, Shanghai 200063, China
| | - Yan Shi
- Academy of Forensic science, Shanghai Key Laboratory of Forensic Medicine, No. 1347 Guangfuxi Road, Shanghai 200063, China
| |
Collapse
|
3
|
Dong S, Guan L, Zhao Y, Wang Y, Liu P, Li P, Han C, Liu B, Zhang C. A dual-signal immunochromatographic assay using quantum dots and polydopamine coated gold nanoparticles for detection of sodium pentachlorophenate in animal-derived food. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Ultrasensitive paper sensor for simultaneous detection of alpha-amanitin and beta-amanitin by the production of monoclonal antibodies. Food Chem 2022; 396:133660. [PMID: 35839720 DOI: 10.1016/j.foodchem.2022.133660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Amanitin (AMA) is responsible for human fatalities after ingestion of poisonous mushrooms, thus, a rapid and accurate detection method is urgently needed. Here, gold nanoparticle-based immunosensor with monoclonal antibody against AMA was constructed for rapid detection of alpha- and beta-amanitin (α- and β-AMA) in mushroom, serum and urine samples. Under optimized conditions, the visual limits of detection (vLOD) and calculated LOD for α-AMA and β-AMA in mushroom were 10 ng/g, 20 ng/g, and 0.1 ng/g, 0.2 ng/g, respectively. Analysis of wild mushroom samples was also performed using a strip scan reader in the 10 min range. Furthermore, in mushrooms containing amatoxins results were confirmed and compared with those determined by liquid chromatography tandem mass spectrometry. Thus, this immunosensor provided a useful monitoring tool for rapid detection and screening of mushroom samples and in serum and urine from subjects who accidentally consumed AMA-containing mushrooms.
Collapse
|
5
|
Zhu J, Dou L, Shao S, Kou J, Yu X, Wen K, Wang Z, Yu W. An Automated and Highly Sensitive Chemiluminescence Immunoassay for Diagnosing Mushroom Poisoning. Front Chem 2022; 9:813219. [PMID: 35004629 PMCID: PMC8733245 DOI: 10.3389/fchem.2021.813219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
Mushrooms containing Amanita peptide toxins are the major cause of mushroom poisoning, and lead to approximately 90% of deaths. Phallotoxins are the fastest toxin causing poisoning among Amanita peptide toxins. Thus, it is imperative to construct a highly sensitive quantification method for the rapid diagnosis of mushroom poisoning. In this study, we established a highly sensitive and automated magnetic bead (MB)-based chemiluminescence immunoassay (CLIA) for the early, rapid diagnosis of mushroom poisoning. The limits of detection (LODs) for phallotoxins were 0.010 ng/ml in human serum and 0.009 ng/ml in human urine. Recoveries ranged from 81.6 to 95.6% with a coefficient of variation <12.9%. Analysis of Amanita phalloides samples by the automated MB-based CLIA was in accordance with that of HPLC-MS/MS. The advantages the MB-based CLIA, high sensitivity, repeatability, and stability, were due to the use of MBs as immune carriers, chemiluminescence as a detection signal, and an integrated device to automate the whole process. Therefore, the proposed automated MB-based CLIA is a promising option for the early and rapid clinical diagnosis of mushroom poisoning.
Collapse
Affiliation(s)
- Jianyu Zhu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.,School of Basic Medicine, Beihua University, Jilin, China
| | - Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shibei Shao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaqian Kou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|