1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Rao D, Meng L, Sheng X, Yu W, Ding CF, Yan Y. Construction of a hydrophilic porphyrin-based MOF@COF hybrid via post-synthetic modification for N-glycopeptides analysis in human serum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8188-8193. [PMID: 39484847 DOI: 10.1039/d4ay01791a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A hybrid material, M@C-Br@GMA@Glu, consisting of a porphyrin-based metal-organic framework-covalent organic framework (MOF@COF), has been meticulously synthesized using a post-synthetic modification approach. This advanced material has demonstrated exceptional effectiveness in glycopeptide enrichment, characterized by an impressively low detection limit (0.2 fmol μL-1), high selectivity (1 : 2000), and loading capacity for glycopeptides (100 mg g-1). In practical applications with complex biological samples, 210 glycopeptides associated with 87 glycoproteins from the serum of the healthy group, and 156 glycopeptides related to 85 glycoproteins from the serum of cervical cancer were identified after enrichment with M@C-Br@GMA@Glu. Subsequent genetic ontology analysis has elucidated the relationship between cervical cancer and glycosylation, focusing on biological processes such as complement activation, innate immune response mechanisms, and the structural dynamics of the extracellular matrix. The collective findings not only validate the material's proficiency in the sensitive and selective enrichment of glycopeptides, but also underscore its potential in biomarker discovery applications.
Collapse
Affiliation(s)
- Dongping Rao
- Women and Children's Hospital of Ningbo University, Ningbo, 315012, China
| | - Luyan Meng
- School of Materials Science and Chemical Engineering, Ningbo 315211, China.
| | - Xiuqin Sheng
- School of Materials Science and Chemical Engineering, Ningbo 315211, China.
| | - Wenying Yu
- Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315021, China.
| | - Chuan-Fan Ding
- School of Materials Science and Chemical Engineering, Ningbo 315211, China.
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Ningbo 315211, China.
| |
Collapse
|
3
|
Yang Z, Gan W, Dai L, Zhang H, Zhang Y, Yang Q, Feng Y, Yang J, Fu C, Li D. Amide and Multihydroxyl Complementary Tailored Metal-Organic Framework with Enhanced Glycan Affinity for Efficient Glycoproteomic Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:401-410. [PMID: 38145926 DOI: 10.1021/acsami.3c17711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Protein glycosylation is ubiquitous and crucial for regulating biological processes in organisms. Given the heterogeneity and low abundance of glycoproteins, efficient and specific enrichment procedures are required for the mass spectrometry analysis of glycopeptides. Hydrophilic interaction liquid chromatography (HILIC) has emerged as an effective strategy for glycopeptide enrichment. However, the relatively weak hydrophilic affinity restricts the achievement of a satisfactory enrichment performance. Here, we presented a rational design of an amide and multihydroxyl complementary tailored metal-organic framework, denoted as U6N/Pv@Glc, which exhibited ultrahydrophilicity and enhanced glycan affinity. Our results demonstrated a significant increase in glycopeptide coverage after enrichment, accompanied by extremely low detection limits (0.05 fmol μL-1) and high selectivity (IgG/BSA, 1:4000) as evaluated using trypsin-digested standard glycoproteins. A total of 379 glycopeptides and 247 intact glycopeptides (containing a total of 1577 site-specific N-glycans) were identified and characterized within human serum samples from individuals with type 2 diabetes in-depth. Additionally, we extended the application of this material to capture undigested glycoproteins, demonstrating potential compatibility with top-down MS analysis. These results highlight the promising potential of this novel material for comprehensive glycoproteomic analysis of every potential aspect.
Collapse
Affiliation(s)
- Zi Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics, General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Zhang
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanruyu Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jingtao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunmei Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dapeng Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Liu S, Wang Y, Weng L, Wu J, Man Q, Xia Y, Huang LH. Water-stable hydrophilic metal organic framework composite for the recognition of N-glycopeptides during diabetes progression by mass spectrometry. Mikrochim Acta 2023; 191:11. [PMID: 38055058 DOI: 10.1007/s00604-023-06052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023]
Abstract
A hydrophilic Al-MOFs composite was prepared using cheap and available reagents in water via a suitable large-scale production, an economical and environment-friendly method for capturing N-glycopeptides. The prepared Al-MOFs composite with high hydrolytically stable and hydrophilic 1D channels exhibits an ultralow detection limit (0.5 fmol/μL), and excellent reusability (at least 10 cycles) in the capture of N-glycopeptides from standard bio-samples. Interestingly, the Al-MOFs composite also shows remarkable performance in practical applications, where 300 N-glycopeptides ascribed to 124 glycoproteins were identified in 1 µL human serum and were successfully applied in profiling the differences of N-glycopeptides during diabetes progression. Moreover, 12 specific glycoproteins used as biomarkers to accurately distinguish the progression of diabetes are identified. The present work provides a potential commercial method for large-scale glycoproteomics research in complex clinical samples while offering new guidance for the precise diagnosis of diabetes progression.
Collapse
Affiliation(s)
- Shuangshuang Liu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yang Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Lingxiao Weng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Jiaqi Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
| | - Yan Xia
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China.
- School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China.
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
5
|
Yi L, Wang B, Feng Q, Yan Y, Ding CF, Mao H. Surface functionalization modification of ultra-hydrophilic magnetic spheres with mesoporous silica for specific identification of glycopeptides in serum exosomes. Anal Bioanal Chem 2023; 415:1741-1749. [PMID: 36790462 DOI: 10.1007/s00216-023-04575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Protein glycosylation of human serum exosomes can reveal significant physiological information, and the development of large-scale identification strategies is crucial for the in-depth investigation of the serum exosome glycoproteome. In this study, using surface functionalization techniques, an ultra-hydrophilic mesoporous silica magnetic nanosphere (denoted as Fe3O4-CG@mSiO2) was synthesized for the quick and accurate detection of glycopeptides from HRP digests. The Fe3O4-CG@mSiO2 nanospheres demonstrated outstanding enrichment capability, high sensitivity (5 amol/μL), good size exclusion effect (HRP digests/BSA proteins, 1:10,000), stable reusability (at least 10 times), and an excellent recovery rate (108.6 ± 5.5%). Additionally, after enrichment by Fe3O4-CG@mSiO2, 156 glycopeptides assigned to 64 proteins derived from human serum exosomes were successfully identified, which demonstrates that the nanospheres have great potential for the research of the large-scale serum exosome glycoproteome.
Collapse
Affiliation(s)
- Linhua Yi
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Yinghua Yan
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China. .,Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China.
| | - Chuan-Fan Ding
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.,Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| |
Collapse
|
6
|
Piovesana S, Cavaliere C, Cerrato A, Laganà A, Montone CM, Capriotti AL. Recent trends in glycoproteomics by characterization of intact glycopeptides. Anal Bioanal Chem 2023:10.1007/s00216-023-04592-z. [PMID: 36811677 PMCID: PMC10328862 DOI: 10.1007/s00216-023-04592-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
This trends article provides an overview of the state of the art in the analysis of intact glycopeptides by proteomics technologies based on LC-MS analysis. A brief description of the main techniques used at the different steps of the analytical workflow is provided, giving special attention to the most recent developments. The topics discussed include the need for dedicated sample preparation for intact glycopeptide purification from complex biological matrices. This section covers the common approaches with a special description of new materials and innovative reversible chemical derivatization strategies, specifically devised for intact glycopeptide analysis or dual enrichment of glycosylation and other post-translational modifications. The approaches are described for the characterization of intact glycopeptide structures by LC-MS and data analysis by bioinformatics for spectra annotation. The last section covers the open challenges in the field of intact glycopeptide analysis. These challenges include the need of a detailed description of the glycopeptide isomerism, the issues with quantitative analysis, and the lack of analytical methods for the large-scale characterization of glycosylation types that remain poorly characterized, such as C-mannosylation and tyrosine O-glycosylation. This bird's-eye view article provides both a state of the art in the field of intact glycopeptide analysis and open challenges to prompt future research on the topic.
Collapse
Affiliation(s)
- Susy Piovesana
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza Università Di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
7
|
Li S, Wei Y, Wang Y, Liang H. Advances in hydrophilic metal-organic frameworks for N-linked glycopeptide enrichment. Front Chem 2022; 10:1091243. [PMID: 36531319 PMCID: PMC9751774 DOI: 10.3389/fchem.2022.1091243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 02/06/2024] Open
Abstract
The comprehensive profiling of glycoproteins is of great significance for the timely clinical diagnosis and therapy. However, inherent obstacles hamper their direct analysis from biological samples, and specific enrichment prior to analysis is indispensable. Among the various approaches for glycopeptide enrichment, hydrophilic interaction liquid chromatography (HILIC) has attracted special focus, especially for the development of novel hydrophilic materials, which is the key of HILIC. Metal-organic frameworks (MOFs) are a type of porous materials constructed from the self-assembly of metal and organic linkers. Advantages such as high surface area, flexible pore size, and easy modification render hydrophilic MOFs as ideal candidates for HILIC, which has inspired many studies over the past years. In this review, advances in hydrophilic MOFs for N-linked glycopeptide enrichment are summarized. According to the synthesis strategies, those materials are categorized into three classes, namely pristine MOFs, MOFs with chemical modifications, and MOFs-derived composite. In each categorization, the preparation and the function of different moieties are covered, as well as the enrichment performances of sensitivity, selectivity, and practical application. Finally, a summary and future perspective on the applications of hydrophilic MOFs for N-linked glycopeptide enrichment are briefly discussed. This review is expected to raise awareness of the properties of hydrophilic MOFs and offer some valuable information to further research in glycoproteomics.
Collapse
Affiliation(s)
| | | | | | - Haoran Liang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
8
|
Hua S, Feng Q, Xie Z, Mao H, Zhou Y, Yan Y, Ding CF. Post-synthesis of covalent organic frameworks with dual-hydrophilic groups for specific capture of serum exosomes. J Chromatogr A 2022; 1679:463406. [DOI: 10.1016/j.chroma.2022.463406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
|
9
|
Wang J, Wang X, Li J, Xia Y, Gao M, Zhang X, Huang LH. A novel hydrophilic MOFs-303-functionalized magnetic probe for the highly efficient analysis of N-linked glycopeptides. J Mater Chem B 2022; 10:2011-2018. [PMID: 35244662 DOI: 10.1039/d1tb02827h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effective analysis of glycoproteomics in clinical complex samples is of vital importance for the diagnosis and therapy of diseases. In this study, a hydrophilic MOFs-303-functionalized magnetic probe (GO@Fe3O4@MOF-303) is designed and fabricated to profile N-linked glycopeptides. Owing to its strong magnetic property, large surface area (845 m2 g-1), excellent hydrophilicity and suitable porous structure, the GO@Fe3O4@MOF-303 probe exhibits an ultralow detection limit (0.1 fmol μL-1), perfect size-exclusion effect (HRP digests/BSA protein/HRP protein, 1 : 1000 : 1000, w/w/w), a high binding capacity (200 mg g-1) and excellent reusability in the capture of standard N-linked glycopeptides. More excitingly, the GO@Fe3O4@MOF-303 probe also shows remarkable performance in practical applications, where 274 N-linked glycopeptides from 101 glycoproteins were identified in total for healthy controls, while a total of 265 N-linked glycopeptides from 102 glycoproteins were identified in serum (1 μL) with hepatocellular carcinoma (HCC). In addition, we discovered 4 up-regulated and 19 down-regulated serum glycoproteins in HCC patients by the hierarchical clustering heatmap. All results demonstrated that the reusable GO@Fe3O4@MOF-303 probe has great potential in profiling different N-linked glycopeptides in complex clinical samples. This study not only developed a novel probe for the highly effective capture of N-linked glycopeptides but also contributed to further understanding the mechanism of HCC and provides guidance for the development of novel clinical diagnostic methods.
Collapse
Affiliation(s)
- Jiaxi Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China. .,Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Xinmei Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Jie Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Yan Xia
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Mingxia Gao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Xiangmin Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Xie Z, Feng Q, Fang X, Dai X, Yan Y, Ding CF. One-Pot Preparation of Hydrophilic Glucose Functionalized Quantum Dots for Diabetic Serum Glycopeptidome Analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Su P, Li M, Li X, Yuan X, Gong Z, Wu L, Song J, Yang Y. Glutathione functionalized magnetic covalent organic frameworks with dual-hydrophilicity for highly efficient and selective enrichment of glycopeptides. J Chromatogr A 2022; 1667:462869. [DOI: 10.1016/j.chroma.2022.462869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/31/2022]
|
12
|
Jin H, Gao W, Liu R, Yang J, Zhang S, Han R, Lin J, Zhang S, Yu J, Tang K. A novel hydrophilic hydrogel with a 3D network structure for the highly efficient enrichment of N-glycopeptides. Analyst 2022; 147:2425-2432. [DOI: 10.1039/d2an00516f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel super-hydrophilic hydrogel (ZIF-8/SAP) was first proposed and facilely fabricated to capture N-glycopeptides from complex biological samples with excellent selectivity and sensitivity.
Collapse
Affiliation(s)
- Haozhou Jin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Wenqing Gao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, P. R. China
| | - Rong Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Jiaqian Yang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
| | - Shun Zhang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, P. R. China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumours of Zhejiang Province, 2019E10020, Ningbo, P. R. China
| | - Renlu Han
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, P. R. China
| | - Jing Lin
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, P. R. China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumours of Zhejiang Province, 2019E10020, Ningbo, P. R. China
| | - Sijia Zhang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, P. R. China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumours of Zhejiang Province, 2019E10020, Ningbo, P. R. China
| | - Jiancheng Yu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, P. R. China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, P. R. China
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, P. R. China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, P. R. China
| |
Collapse
|