1
|
Xing T, Wang X, Xu Y, Sun F, Chen M, Yan Q, Ma Z, Jiang H, Chen X, Li X, Sultan R, Yan T, Wang Z, Jia J. Click method preserves but EDC method compromises the therapeutic activities of the peptide-activated hydrogels for critical ischemic vessel regeneration. Biomed Pharmacother 2024; 177:116959. [PMID: 38906023 DOI: 10.1016/j.biopha.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/25/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Peptide-functionalized hydrogel is one of commonly used biomaterials to introduce hydrogel-induced vessel regeneration. Despite many reports about the discoveries of high-active peptides (or ligands) for regeneration, the study on the conjugating methods for the hydrogel functionalization with peptides is limited. Here, we compared the vasculogenic efficacy of the peptide-functionalized hydrogels prepared by two commonly used conjugating methods, 1-ethyl-3-(3-dimethylamino propyl) carbodiimide (EDC) and Click methods, through cell models, organ-on-chips models, animal models, and RNA sequencing analysis. Two vascular-related cell types, the human umbilical vein endothelial cells (HUVECs) and the adipose-derived stem cells (ADSCs), have been cultured on the hydrogel surfaces prepared by EDC/Click methods. It showed that the hydrogels prepared by Click method supported the higher vasculogenic activities while the ones made by EDC method compromised the peptide activities on hydrogels. The vasculogenesis assays further revealed that hydrogels prepared by Click method promoted a better vascular network formation. In a critical ischemic hindlimb model, only the peptide-functionalized hydrogels prepared by Click method successfully salvaged the ischemic limb, significantly improved blood perfusion, and enhanced the functional recoveries (through gait analysis and animal behavior studies). RNA sequencing studies revealed that the hydrogels prepared by Click method significantly promoted the PI3K-AKT pathway activation compared to the hydrogels prepared by EDC method. All the results suggested that EDC method compromised the functions of the peptides, while Click method preserved the vascular regenerating capacities of the peptides on the hydrogels, illustrating the importance of the conjugating method during the preparation of the peptide-functionalized hydrogels.
Collapse
Affiliation(s)
- Tongying Xing
- School of Life Sciences, Shanghai University, Shanghai, China; Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Xuelin Wang
- School of Life Sciences, Shanghai University, Shanghai, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Yongqiang Xu
- Department of colorectal surgery, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Fei Sun
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Min Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qiang Yan
- Department of Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, China; Department of Surgery, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Zhihong Ma
- Department of Precision Medical Clinical Research Center, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xingxing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Rabia Sultan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China.
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China; Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China.
| |
Collapse
|
2
|
Patterson K, Romero-Reyes MA, Heemstra JM. Fluorescence Quenching of Xanthene Dyes during Amide Bond Formation Using DMTMM. ACS OMEGA 2022; 7:33046-33053. [PMID: 36157719 PMCID: PMC9494652 DOI: 10.1021/acsomega.2c03085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Fluorophore bioconjugation to proteins, nucleic acids, and other important molecules can provide a powerful approach to sensing, imaging, and quantifying chemical and biological processes. One of the most prevalent methods for fluorophore attachment is through the formation of amide bonds, which are often facilitated by coupling agents to activate carboxylic acid moieties for subsequent nucleophilic attack by amines. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) is among the most popular of these coupling agents for bioconjugation due to its ability to facilitate amide bond formation in water. After observing quenching of 5-fluoresceinamine (5-FAM)-conjugated oligonucleotides in the presence of DMTMM, we sought to evaluate the magnitude and scope of this challenge by surveying the effect of DMTMM on a range of fluorescent dyes. A higher quenching effect was consistently observed for xanthene dyes compared to that for cyanine dyes. Further analysis of the impact of DMTMM on FAM shows that quenching occurs independently of whether the dye is free in solution or attached to an oligonucleotide or antibody. Furthermore, we found that FAM-conjugated DNA was unable to recover its fluorescence after the removal of DMTMM, and UV-vis and NMR analyses suggest the formation of new products, such as an adduct formed between FAM and the dimethoxytriazine of DMTMM. As such, DMTMM at high concentrations is not recommended for coupling reactions where targets are fluorescently labeled. This research serves as a word of caution to those utilizing xanthene-containing fluorophores in bioconjugation reactions involving DMTMM.
Collapse
Affiliation(s)
- Kristen
N. Patterson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Misael A. Romero-Reyes
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Hanover College, Hanover, Indiana 47243, United States
| | - Jennifer M. Heemstra
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|