1
|
Pekov SI, Bormotov DS, Bocharova SI, Sorokin AA, Derkach MM, Popov IA. Mass spectrometry for neurosurgery: Intraoperative support in decision-making. MASS SPECTROMETRY REVIEWS 2025; 44:62-73. [PMID: 38571445 DOI: 10.1002/mas.21883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Ambient ionization mass spectrometry was proved to be a powerful tool for oncological surgery. Still, it remains a translational technique on the way from laboratory to clinic. Brain surgery is the most sensitive to resection accuracy field since the balance between completeness of resection and minimization of nerve fiber damage determines patient outcome and quality of life. In this review, we summarize efforts made to develop various intraoperative support techniques for oncological neurosurgery and discuss difficulties arising on the way to clinical implementation of mass spectrometry-guided brain surgery.
Collapse
Affiliation(s)
- Stanislav I Pekov
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| | - Denis S Bormotov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | | | - Anatoly A Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Maria M Derkach
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Igor A Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
2
|
Shahi M, Pringle S, Morris M, Garcia DM, Quiñones-Hinojosa A, Cooks RG. Detection of IDH mutation in glioma by desorption electrospray ionization (DESI) tandem mass spectrometry. Sci Rep 2024; 14:26865. [PMID: 39500924 PMCID: PMC11538546 DOI: 10.1038/s41598-024-77044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Desorption electrospray ionization (DESI) tandem mass spectrometry (MS) is used to assess mutation status of isocitrate dehydrogenase (IDH) in human gliomas. Due to the diffuse nature of gliomas, total gross resection is not normally achieved during surgery, leading to tumor recurrence. The mutation status of IDH has clinical significance due to better prognosis in IDH-mutant patients. The mutant IDH converts alpha-ketoglutaric acid (α-KG) into 2-hydroxyglutarate (2HG), which accumulates abnormally in cells. Immunohistochemical staining (IHC) and genetic testing, the gold standards, are incompatible with intraoperative applications but DESI tandem mass spectrometry (MS/MS) can be used to assess the mutation status of IDH enzyme from tissue intraoperatively. Here, on off-line evaluation is made of the performance of two different types of mass spectrometers in characterization of IDH mutation status. The intensity of 2HG is measured against glutamate (Glu), an intrinsic reference molecule, in both tandem MS measurements. In both cases using DESI clear separation between IDH-mutant (mut) and IDH-wildtype (wt) samples (p < 0.0001) is observed, despite the short analysis time. Due to the higher detection sensitivity, multiple reaction monitoring experiments using a triple quadrupole show slightly better performance compared to product ion MS/MS performed on a simple linear ion trap. Both DESI-MS platforms are capable of providing information on IDH mutation status, which might in future be used at the time of surgery to support decision-making on resection regions, especially at tumor margins.
Collapse
Affiliation(s)
- Mahdiyeh Shahi
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Ivanova B. Special Issue with Research Topics on "Recent Analysis and Applications of Mass Spectra on Biochemistry". Int J Mol Sci 2024; 25:1995. [PMID: 38396673 PMCID: PMC10888122 DOI: 10.3390/ijms25041995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Analytical mass spectrometry applies irreplaceable mass spectrometric (MS) methods to analytical chemistry and chemical analysis, among other areas of analytical science [...].
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| |
Collapse
|
4
|
Zhao H, Shi C, Han W, Luo G, Huang Y, Fu Y, Lu W, Hu Q, Shang Z, Yang X. Advanced progress of spatial metabolomics in head and neck cancer research. Neoplasia 2024; 47:100958. [PMID: 38142528 PMCID: PMC10788507 DOI: 10.1016/j.neo.2023.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Head and neck cancer ranks as the sixth most prevalent malignancy, constituting 5 % of all cancer cases. Its inconspicuous onset often leads to advanced stage diagnoses, prompting the need for early detection to enhance patient prognosis. Currently, research into early diagnostic markers relies predominantly on genomics, proteomics, transcriptomics, and other methods, which, unfortunately, necessitate tumor tissue homogenization, resulting in the loss of temporal and spatial information. Emerging as a recent addition to the omics toolkit, spatial metabolomics stands out. This method conducts in situ mass spectrometry analyses on fresh tissue specimens while effectively preserving their spatiotemporal information. The utilization of spatial metabolomics in life science research offers distinct advantages. This article comprehensively reviews the progress of spatial metabolomics in head and neck cancer research, encompassing insights into cancer cell metabolic reprogramming. Various mass spectrometry imaging techniques, such as secondary ion mass spectrometry, stroma-assisted laser desorption/ionization, and desorption electrospray ionization, enable in situ metabolite analysis for head and neck cancer. Finally, significant emphasis is placed on the application of presently available techniques for early diagnosis, margin assessment, and prognosis of head and neck cancer.
Collapse
Affiliation(s)
- Huiting Zhao
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China; School of Stomatology, Jinzhou Medical University, Jinzhou 121001, China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Guanfa Luo
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China
| | - Yumeng Huang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China
| | - Yujuan Fu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China; School of Stomatology, Jinzhou Medical University, Jinzhou 121001, China
| | - Wen Lu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | | | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University. Zhenjiang 212001, China; School of Stomatology, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
5
|
Bhargav AG, Domino JS, Alvarado AM, Tuchek CA, Akhavan D, Camarata PJ. Advances in computational and translational approaches for malignant glioma. Front Physiol 2023; 14:1219291. [PMID: 37405133 PMCID: PMC10315500 DOI: 10.3389/fphys.2023.1219291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults and carry a dismal prognosis for patients. Current standard-of-care for gliomas is comprised of maximal safe surgical resection following by a combination of chemotherapy and radiation therapy depending on the grade and type of tumor. Despite decades of research efforts directed towards identifying effective therapies, curative treatments have been largely elusive in the majority of cases. The development and refinement of novel methodologies over recent years that integrate computational techniques with translational paradigms have begun to shed light on features of glioma, previously difficult to study. These methodologies have enabled a number of point-of-care approaches that can provide real-time, patient-specific and tumor-specific diagnostics that may guide the selection and development of therapies including decision-making surrounding surgical resection. Novel methodologies have also demonstrated utility in characterizing glioma-brain network dynamics and in turn early investigations into glioma plasticity and influence on surgical planning at a systems level. Similarly, application of such techniques in the laboratory setting have enhanced the ability to accurately model glioma disease processes and interrogate mechanisms of resistance to therapy. In this review, we highlight representative trends in the integration of computational methodologies including artificial intelligence and modeling with translational approaches in the study and treatment of malignant gliomas both at the point-of-care and outside the operative theater in silico as well as in the laboratory setting.
Collapse
Affiliation(s)
- Adip G. Bhargav
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Joseph S. Domino
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anthony M. Alvarado
- Department of Neurological Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Chad A. Tuchek
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - David Akhavan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Bioengineering Program, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul J. Camarata
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
6
|
Bogusiewicz J, Bojko B. Insight into new opportunities in intra-surgical diagnostics of brain tumors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Ivanova B, Spiteller M. Stochastic dynamic ultraviolet photofragmentation and high collision energy dissociation mass spectrometric kinetics of triadimenol and sucralose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32348-32370. [PMID: 36462070 DOI: 10.1007/s11356-022-24259-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
The major goal of the paper is to provide empirical proof of view that innovative stochastic dynamic mass spectrometric equation D″SD = 2.6388·10-17·(< I2 > - < I > 2) determines the exact analyte concentration in solution via quantifying experimental variable intensity (I) of an analyte ion per any short span of scan time of any measurement, which also appears applicable to quantify laser-induced ultraviolet photofragmentation and high energy collision dissociation mass spectrometric processes. Triadimenol (1) and sucralose (2) using positive and negative polarity are examined. Laser irradiation energy λex = 213 nm is utilized. The issue is of central importance for monitoring organic micro-pollutants in surface, ground, and drinking water as well as tasks of risk assessment for environment and human health from contamination with organics. Despite the significant importance of the topic, answering the question of functional kinetic relations of such processes is by no means straightforward, so far, due to a lack of in-depth knowledge of mechanistic aspects of fragment paths of analytes in environment and foods as well as kinetics of processes under ultraviolet laser irradiation. Although there is truth in the classical theory of first-order reaction kinetics, it does not describe all kinetic data on analytes (1) and (2). A new damped sine wave functional response to a large amount of kinetics is presented. High-resolution mass spectrometric data and chemometrics are used. The study provides empirical evidence for claim that temporal behavior of mass spectrometric variable intensity under negative polarity obeys a certain scientific law written by means of equation above. It is the same for positive and negative soft-ionization mass spectrometric conditions.
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl Für Analytische Chemie, Institut Für Umweltforschung, Fakultät Für Chemie Und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221, Dortmund, Nordrhein-Westfalen, Germany.
| | - Michael Spiteller
- Lehrstuhl Für Analytische Chemie, Institut Für Umweltforschung, Fakultät Für Chemie Und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221, Dortmund, Nordrhein-Westfalen, Germany
| |
Collapse
|
8
|
Jiang S, Chai H, Tang Q. Advances in the intraoperative delineation of malignant glioma margin. Front Oncol 2023; 13:1114450. [PMID: 36776293 PMCID: PMC9909013 DOI: 10.3389/fonc.2023.1114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Surgery plays a critical role in the treatment of malignant glioma. However, due to the infiltrative growth and brain shift, it is difficult for neurosurgeons to distinguish malignant glioma margins with the naked eye and with preoperative examinations. Therefore, several technologies were developed to determine precise tumor margins intraoperatively. Here, we introduced four intraoperative technologies to delineate malignant glioma margin, namely, magnetic resonance imaging, fluorescence-guided surgery, Raman histology, and mass spectrometry. By tracing their detecting principles and developments, we reviewed their advantages and disadvantages respectively and imagined future trends.
Collapse
|
9
|
Bormotov DS, Eliferov VA, Peregudova OV, Zavorotnyuk DS, Bocharov KV, Pekov SI, Sorokin AA, Nikolaev EN, Popov IA. Incorporation of a Disposable ESI Emitter into Inline Cartridge Extraction Mass Spectrometry Improves Throughput and Spectra Stability. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:119-122. [PMID: 36535019 DOI: 10.1021/jasms.2c00207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rapid and reliable methods for detecting tumor margins are crucial for neuro-oncology. Several mass spectrometry-based methods have been recently proposed to address this problem. Inline Cartridge Extraction (ICE) demonstrates the potential for clinical application, based on ex-vivo analysis of dissected tissues, but requires time-consuming steps to avoid cross-contamination. In this work, a method of incorporating a disposable electrospray emitter into the ICE cartridge by PEEK sleeves melting is developed. It reduces total analysis time and improves throughput. The proposed setup also improves the robustness of the ICE molecular profiling as demonstrated with human glial tumor samples in that stability and reproducibility of the spectra were increased.
Collapse
Affiliation(s)
- Denis S Bormotov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation
| | - Vasily A Eliferov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation
| | - Olga V Peregudova
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation
| | - Denis S Zavorotnyuk
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation
| | - Konstantin V Bocharov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | - Stanislav I Pekov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russian Federation
- Siberian State Medical University, Tomsk 634050, Russian Federation
| | - Anatoly A Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation
| | - Eugene N Nikolaev
- Skolkovo Institute of Science and Technology, Moscow 121205, Russian Federation
| | - Igor A Popov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation
| |
Collapse
|
10
|
Morato NM, Brown HM, Garcia D, Middlebrooks EH, Jentoft M, Chaichana K, Quiñones-Hinojosa A, Cooks RG. High-throughput analysis of tissue microarrays using automated desorption electrospray ionization mass spectrometry. Sci Rep 2022; 12:18851. [PMID: 36344609 PMCID: PMC9640715 DOI: 10.1038/s41598-022-22924-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Tissue microarrays (TMAs) are commonly used for the rapid analysis of large numbers of tissue samples, often in morphological assessments but increasingly in spectroscopic analysis, where specific molecular markers are targeted via immunostaining. Here we report the use of an automated high-throughput system based on desorption electrospray ionization (DESI) mass spectrometry (MS) for the rapid generation and online analysis of high-density (6144 samples/array) TMAs, at rates better than 1 sample/second. Direct open-air analysis of tissue samples (hundreds of nanograms) not subjected to prior preparation, plus the ability to provide molecular characterization by tandem mass spectrometry (MS/MS), make this experiment versatile and applicable to both targeted and untargeted analysis in a label-free manner. These capabilities are demonstrated in a proof-of-concept study of frozen brain tissue biopsies where we showcase (i) a targeted MS/MS application aimed at identification of isocitrate dehydrogenase mutation in glioma samples and (ii) an untargeted MS tissue type classification using lipid profiles and correlation with tumor cell percentage estimates from histopathology. The small sample sizes and large sample numbers accessible with this methodology make for a powerful analytical system that facilitates the identification of molecular markers for later use in intraoperative applications to guide precision surgeries and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Nicolás M. Morato
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA
| | - Hannah Marie Brown
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA ,grid.4367.60000 0001 2355 7002Present Address: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - Diogo Garcia
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA
| | - Erik H. Middlebrooks
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA ,grid.417467.70000 0004 0443 9942Department of Radiology, Mayo Clinic, Jacksonville, FL USA
| | - Mark Jentoft
- grid.417467.70000 0004 0443 9942Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA
| | - Kaisorn Chaichana
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA
| | | | - R. Graham Cooks
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
11
|
Ivanova B, Spiteller M. Mass spectrometric stochastic dynamic 3D structural analysis of mixture of steroids in solution - Experimental and theoretical study. Steroids 2022; 181:109001. [PMID: 35257712 DOI: 10.1016/j.steroids.2022.109001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
There is explored, herein, functional relation: Experimental mass spectrometric phenomenon, obeying a certain scientific law ⇔ 3D molecular conformations and electronic structures of analytes obtained for quantum chemical theories. The paper answers to questions: (a) What evidence claims these actual relations among measurable and theoretical parameters, experimental factors and molecular properties; (b) how the provided evidence is collected and used; and (c) how empirical proof relates to assign and explain mass spectrometric phenomena of steroids afforded by our innovative stochastic dynamic mass spectrometric formula, D″SD = 2.6388.10-17.(<I2>-<I>2), quantum chemical 3D conformations, electronic structures and energetics of molecules, respectively. The paper address issue concerning empirical evidence at very high-to-exact level of assignment of 3D molecular conformations of steroids to experimental mass spectrometric fragment ions, accounting precisely for (i) effect of protonation; (ii) intramolecular rearrangement for A-D rings of steroidal skeleton and proton transfer effect, if any; in addition to (iii) examination of enantiomers of steroids in mixture with different stereochemistry, (R) and (S), of a set of six atoms of the molecular backbone of hydrocortisone (1), deoxycorticosterone (2), progesterone (3) and methyltestosterone (4), respectively. Results from testosterone (5) are discussed, as well. There are used ultra-high resolution atmospheric pressure chemical ionization mass spectrometric data on analytes (1)-(4) at ng.(mL)-1 concentration levels in mixtures in solution obtained for positive operation mode. High accuracy static and molecular dynamic quantum chemical computations and chemometrics are also utilized. Experimental 3D structural parameters of steroids obtained for stochastic dynamic diffusion theory are correlated with available crystallographic data.
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Nordrhein-Westfalen, Germany.
| | - Michael Spiteller
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Nordrhein-Westfalen, Germany
| |
Collapse
|
12
|
Rankin‐Turner S, Reynolds JC, Turner MA, Heaney LM. Applications of ambient ionization mass spectrometry in 2021: An annual review. ANALYTICAL SCIENCE ADVANCES 2022; 3:67-89. [PMID: 38715637 PMCID: PMC10989594 DOI: 10.1002/ansa.202100067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 06/26/2024]
Abstract
Ambient ionization mass spectrometry (AIMS) has revolutionized the field of analytical chemistry, enabling the rapid, direct analysis of samples in their native state. Since the inception of AIMS almost 20 years ago, the analytical community has driven the further development of this suite of techniques, motivated by the plentiful advantages offered in addition to traditional mass spectrometry. Workflows can be simplified through the elimination of sample preparation, analysis times can be significantly reduced and analysis remote from the traditional laboratory space has become a real possibility. As such, the interest in AIMS has rapidly spread through analytical communities worldwide, and AIMS techniques are increasingly being integrated with standard laboratory operations. This annual review covers applications of AIMS techniques throughout 2021, with a specific focus on AIMS applications in a number of key fields of research including disease diagnostics, forensics and security, food safety testing and environmental sciences. While some new techniques are introduced, the focus in AIMS research is increasingly shifting from the development of novel techniques toward efforts to improve existing AIMS techniques, particularly in terms of reproducibility, quantification and ease-of-use.
Collapse
Affiliation(s)
- Stephanie Rankin‐Turner
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - James C. Reynolds
- Department of ChemistryLoughborough UniversityLoughboroughLeicestershireUK
| | - Matthew A. Turner
- Department of ChemistryLoughborough UniversityLoughboroughLeicestershireUK
| | - Liam M. Heaney
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| |
Collapse
|
13
|
Thapa B, Mareyam A, Stockmann J, Strasser B, Keil B, Hoecht P, Carp S, Li X, Wang Z, Chang YV, Dietrich J, Uhlmann E, Cahill DP, Batchelor T, Wald L, Andronesi OC. In Vivo Absolute Metabolite Quantification Using a Multiplexed ERETIC-RX Array Coil for Whole-Brain MR Spectroscopic Imaging. J Magn Reson Imaging 2021; 56:121-133. [PMID: 34958166 DOI: 10.1002/jmri.28028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Absolute quantification of metabolites in MR spectroscopic imaging (MRSI) requires a stable reference signal of known concentration. The Electronic REference To access In vivo Concentrations (ERETIC) has shown great promise but has not been applied in patients and 3D MRSI. ERETIC hardware has not been integrated with receive arrays due to technical challenges, such as coil combination and unwanted coupling between multiple ERETIC and receive channels, for which we developed mitigation strategies. PURPOSE To develop absolute quantification for whole-brain MRSI in glioma patients. STUDY TYPE Prospective. POPULATION Five healthy volunteers and three patients with isocitrate dehydrogenase mutant glioma (27% female). Calibration and coil loading phantoms. FIELD STRENGTH/SEQUENCE A 3 T; Adiabatic spin-echo spiral 3D MRSI with real-time motion correction, Fluid Attenuated Inversion Recovery (FLAIR), Gradient Recalled Echo (GRE), Multi-echo Magnetization Prepared Rapid Acquisition of Gradient Echo (MEMPRAGE). ASSESSMENT Absolute quantification was performed for five brain metabolites (total N-acetyl-aspartate [NAA]/creatine/choline, glutamine + glutamate, myo-inositol) and the oncometabolite 2-hydroxyglutarate using a custom-built 4x-ERETIC/8x-receive array coil. Metabolite quantification was performed with both EREIC and internal water reference methods. ERETIC signal was transmitted via optical link and used to correct coil loading. Inductive and radiative coupling between ERETIC and receive channels were measured. STATISTICAL TESTS ERETIC and internal water methods for metabolite quantification were compared using Bland-Altman (BA) analysis and the nonparametric Mann-Whitney test. P < 0.05 was considered statistically significant. RESULTS ERETIC could be integrated in receive arrays and inductive coupling dominated (5-886 times) radiative coupling. Phantoms show proportional scaling of the ERETIC signal with coil loading. The BA analysis demonstrated very good agreement (3.3% ± 1.6%) in healthy volunteers, while there was a large difference (36.1% ± 3.8%) in glioma tumors between metabolite concentrations by ERETIC and internal water quantification. CONCLUSION Our results indicate that ERETIC integrated with receive arrays and whole-brain MRSI is feasible for brain metabolites quantification. Further validation is required to probe that ERETIC provides more accurate metabolite concentration in glioma patients. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Bijaya Thapa
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Azma Mareyam
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Jason Stockmann
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Bernhard Strasser
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | | | - Stefan Carp
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Xianqi Li
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Zhe Wang
- Siemens Medical Solutions USA, Boston, Massachusetts, USA
| | - Yulin V Chang
- Siemens Medical Solutions USA, Boston, Massachusetts, USA
| | - Jorg Dietrich
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erik Uhlmann
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Daniel P Cahill
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tracy Batchelor
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Brigham's and Women Hospital, Boston, Massachusetts, USA.,Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lawrence Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Ovidiu C Andronesi
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|