1
|
Zhao CY, Song C, He HW, Huang XZ, Meng XY, Huang AC, Xu CY, Luo LL, Xi SY, Lan YQ, Li WW, Lin YR, Zhu QD. Clinical Characteristics Analysis of 30 Cases of Interferon-γ Autoantibody-Positive Patients with Concurrent Mycobacterial Infection: A 6-Year Retrospective Study. Infect Drug Resist 2025; 18:1097-1110. [PMID: 40027921 PMCID: PMC11871848 DOI: 10.2147/idr.s493956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/08/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose This study aimed to investigate and elucidate the clinical characteristics, immune status, infection types and patterns, treatment responses, and disease progression in patients with positive anti-interferon-gamma (IFN-γ) autoantibodies in combination with Mycobacterium infections. Patients and Methods We conducted a retrospective analysis of clinical data from patients with positive anti-IFN-γ autoantibodies and concurrent Mycobacterial infections, including Mycobacterial infections (MTB) and non-tuberculous mycobacteria (NTM). The study included cases treated at the Fourth People's Hospital of Nanning, Guangxi, from 2018 to 2023. Data collected comprised symptoms, clinical signs, laboratory test results, imaging findings, and other relevant clinical information. Patients were also followed up to evaluate treatment responses and long-term therapeutic outcomes. Results A total of 30 patients with MTB and NTM infections were analyzed. The majority presented with common symptoms, such as cough, sputum production, weight loss, extrapulmonary tuberculosis (TB), and a range of opportunistic infections. Laboratory and imaging studies revealed complex infection patterns and various pathological changes. Treatment primarily involved targeted anti-infective therapy combined with immunosupportive measures. However, frequent treatment relapses and side effects were observed, resulting in two deaths. Conclusion Immune deficiency associated with positive anti-IFN-γ autoantibodies resembles the immunosuppression seen in advanced stages of human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS), rendering patients highly susceptible to opportunistic infections. These infections were predominantly caused by NTM, followed by MTB and Talaromyces marneffei (TM). This represents a novel immune deficiency syndrome that predisposes patients to a spectrum of opportunistic infections.
Collapse
Affiliation(s)
- Chun-Yan Zhao
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
- Clinical Medical School, Guangxi Medical University, Nanning, People’s Republic of China
| | - Chang Song
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
- Clinical Medical School, Guangxi Medical University, Nanning, People’s Republic of China
| | - Hua-Wei He
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Xian-Zhen Huang
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Xia-Yan Meng
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Ai-Chun Huang
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Chao-Yan Xu
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Li-Li Luo
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Shao-Yong Xi
- Department of Clinical Laboratory, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Yan-Qun Lan
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Wei-Wen Li
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Yan-Rong Lin
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Qing-Dong Zhu
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| |
Collapse
|
2
|
Zhang B, Xu Y, Huang Z, Li R, Zhu T, Liang S, Huang H, Zhong S, Yang H, Fan X, Tan X, Chai Y. Consolidated Microscale Interferon-γ Release Assay with Tip Optofluidic Immunoassay for Dynamic Parallel Diagnosis of Tuberculosis Infection. Anal Chem 2025; 97:2863-2872. [PMID: 39889247 DOI: 10.1021/acs.analchem.4c05390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Interferon-γ release assay (IGRA) is one of the most important diagnostic tools for tuberculosis (TB) infection. Despite its high accuracy, conventional IGRA has several drawbacks, including complicated procedures, large blood volume requirements, lengthy incubation times, and difficulties in parallel testing. Efforts have been made to develop miniaturized and highly sensitive biosensors for interferon-γ or to evaluate the specific immune response through microfluidic platforms. However, the need for sophisticated consumables and equipment, as well as the partial experimental design, has limited the application of these advanced techniques in TB diagnosis and disease control. Here, we report the development of a tip optofluidic immunoassay (TOI)-based consolidated microscale IGRA (CM-IGRA) for the dynamic and parallel evaluation of TB infection, refining both the blood incubation and interferon-γ quantification processes. The TOI system comprises 12 microfluidic immuno-reactors and a portable chemiluminescent imaging station, capable of quantifying interferon-γ with high sensitivity (8.00 pg/mL in plasma) and a wide detection range (∼104). The results generated with CM-IGRA achieved 98.39% agreement with the standard IGRA while reducing blood sample consumption to 50 μL per assay (20-fold reduction) and significantly shortening the incubation time from 20 to 10 h. This diagnostic method simplifies operations and improves efficiency for the parallel assays required in IGRA, providing a promising solution for TB screening in patients for whom current methods are inconvenient, such as children and older adults.
Collapse
Affiliation(s)
- Binmao Zhang
- Department of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Department of Tuberculosis, Shenzhen Baoan People's Hospital, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, Shenzhen Baoan People's Hospital, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Zhen Huang
- Department of Tuberculosis, Shenzhen Baoan People's Hospital, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Ruihan Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianen Zhu
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, China
| | - Shangyan Liang
- Department of Clinical Laboratory, Shenzhen Baoan People's Hospital, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Hao Huang
- Department of Clinical Laboratory, Shenzhen Baoan People's Hospital, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Siyan Zhong
- Department of General Practice, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, China
| | - Hui Yang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor ,Michigan 48109, United States
| | - Xiaotian Tan
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yujuan Chai
- Department of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Wang H, Li X, Wang S, Fang R, Xing J, Wu R, Zhang C, Li Z, Song N. Novel target and cofactor repertoire for the transcriptional regulator JTY_0672 from Mycobacterium bovis BCG. Front Microbiol 2025; 15:1464444. [PMID: 39845031 PMCID: PMC11752888 DOI: 10.3389/fmicb.2024.1464444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogenic agent of tuberculosis (TB). Intracellular survival plays a central role in the pathogenesis of Mtb in a manner that is dependent on an array of transcriptional regulators for Mtb. However, the functionality of JTY_0672, a member of the TetR family of transcriptional regulators, remains unknown. In this study, EMSA, BIL, ChlP-PCR and animal models were used to investigate the regulation function of this protein. We found that the transcriptional regulator JTY_0672 is a broad-spectrum transcriptional regulatory protein and can directly regulate JTY_3148, both in vitro and in vivo. Cofactors containing V B1, V B3, V B6, V C , His, Cys, Asp, Glu, Fe3+, Pb2+, Cu2+, and Li+ were found to inhibit binding between JTY_0672 and the promoter of JTY_3148. JTY_0672 enhanced TAG production and increased Isoniazid (INH) resistance. Besides, this protein either promoted recalcitrance to the host immune response and induced pathological injury and inflammation. In summary, this research identified new targets and cofactors of JTY_0672 and deciphered the physiological functionality of JTY_0672. Our findings will provide an important theoretical basis for understanding the Mtb transcriptional regulatory mechanism.
Collapse
Affiliation(s)
- Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| | - Ruiying Wu
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| | - Chunhui Zhang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Sciences and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
4
|
Villareal-Rivota B, Meneses-Preza YG, Campillo-Navarro M, Ruiz-Sánchez BP, Soria-Castro R, Barrios-Payán J, Mata-Espinosa D, Donis-Maturano L, Pérez-Tapia SM, Chávez-Blanco AD, Estrada-Parra S, Hernández-Pando R, Chacón-Salinas R. Impaired control of Mycobacterium tuberculosis infection in mast cell-deficient Kit W-sh/W-sh mice. Tuberculosis (Edinb) 2025; 150:102587. [PMID: 39612800 DOI: 10.1016/j.tube.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Tuberculosis (TB) is a global health problem with diverse clinical manifestations. Different cells of the immune response participate in containing the infection, mainly through the development of granulomas. Mast cells (MCs) are hematopoietic cells that participate in the immune response to different pathogens, and in vitro evidence indicates that they can be activated by Mycobacterium tuberculosis (Mtb). The aim of this study was to evaluate the role of MCs in a murine TB model. We observed that KitW-sh/W-sh mast cell-deficient mice showed increased bacterial load in the lungs and the spleen compared to wild-type C57BL/6 mice. Furthermore, MC-deficient mice showed fewer pulmonary granulomas but an early higher inflammatory infiltrate. Interestingly, serum cytokine levels were altered in MC-deficient mice, which showed increased levels of IL-4, IL-5, and IL-22 during the early phase of the infection but increased levels of IFN-γ, IL-9, IL-10, and IL-21 during the late phase of the infection. These results show that mast cells play an important role during Mtb infection by modulating the immune response to the bacteria.
Collapse
Affiliation(s)
- Berenice Villareal-Rivota
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Yatsiri G Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Marcia Campillo-Navarro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Bibiana Patricia Ruiz-Sánchez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | - Luis Donis-Maturano
- Faculty of Higher Studies-Iztacala, National Autonomous University of Mexico, Tlalnepantla de Baz, 54090, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico; Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Alma D Chávez-Blanco
- División de Ciencia Básica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico.
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico.
| |
Collapse
|
5
|
Isaei E, Sobhanipoor MH, Rahimlou M, Firouzeh N. The application of aptamer in tuberculosis diagnosis: a systematic review. Trop Dis Travel Med Vaccines 2024; 10:25. [PMID: 39674868 DOI: 10.1186/s40794-024-00235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024] Open
Abstract
Tuberculosis represents a significant menace to health, leading to millions of cases and fatalities each year. Traditional diagnostic methods, while effective, have limitations, necessitating improved tools. Aptamers possessing remarkable specificity single-stranded DNA or RNA molecules promising in TB diagnosis due to their adaptability and precise biomarker detection capabilities. In this study, we aimed to evaluate the research on aptamer applications in TB diagnosis, evaluating the efficacy, limitations, and future prospects. The present systematic review study followed PRISMA guidelines, including peer-reviewed studies on aptamer efficacy in TB diagnosis. Eligibility criteria covered experimental and human studies on TB diagnosis, prognosis, progression, and treatment response. Of 1165 identified studies, 35 met inclusion criteria. Aptamers were utilized for MTB and mycobacterial antigen detection, showcasing notable sensitivity and specificity. Targeted antigens included ESAT-6, HspX, MPT 64, and IFN-γ. Various aptamer-based assays, such as electrochemical, fluorescent, and immunosensors, demonstrated effectiveness. Multiplex assays, particularly for IFN-γ, showed enhanced diagnostic accuracy. Aptamer-based assays exhibited discrimination between active TB and other conditions, showcasing their diagnostic value. Aptamers, especially in conjunction with nanomaterials, show promise in developing advanced TB biosensors with superior detection capabilities. Cost-effective devices with heightened sensitivity for clinical and screening use are crucial for TB control, emphasizing the need for ongoing research in this field.
Collapse
Affiliation(s)
- Elham Isaei
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nima Firouzeh
- Vector-Borne Disease Research Center, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| |
Collapse
|
6
|
Zhao L, Yin Y, Xiao S, Qiu Y, Wang S, Dong Y. A dual-mode aptasensor based on rolling circle amplification enriched G-quadruplex for highly sensitive IFN-γ detection. Anal Chim Acta 2024; 1329:343254. [PMID: 39396313 DOI: 10.1016/j.aca.2024.343254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Aptasensors have been extensively utilized in target detection due to their advantages of high sensitivity and fast response. However, the reliability of the detection results of the single-mode aptasensor cannot be verified in time. Developing efficient detection methods with cross-validation capability is beneficial to achieving highly reliable detection. This study aims to design a colorimetric and fluorescent dual-mode aptasensor by skillfully engineering G-quadruplex assembly and rolling circle amplification for highly reliable IFN-γ detection. RESULTS The complexes of anti-IFN-γ aptamers and complement sequences (cDNA) were modified on the magnetic beads. In the presence of IFN-γ, the preferential combination of aptamers with IFN-γ resulted in the release of cDNAs. The cDNAs were collected by magnetic separation and then used as primers to trigger rolling circle amplification reaction to generate enriched G-quadruplexes. The G-quadruplex could be utilized to combine with hemin to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine for colormetric mode or to couple with the fluorogenic dye Thioflavin T for fluorescent mode. The developed dual-mode aptasensor displayed a linear range of 1-10000 pM with a detection limit of 0.406 pM for the colormetric mode and a range of 0.1-10000 pM with a detection limit of 0.037 pM for the fluorescent mode. Further, the designed aptasensor was applied to IFN-γ detection in serum samples and achieved satisfactory recoveries. SIGNIFICANCE This innovative dual-mode detection strategy skillfully leverages the effective target-binding ability of aptamer, dual-function of the G-quadruplex and the signal amplifying ability of rolling circle amplification. This approach not only provides a reliable testing tool for the detection of IFN-γ, but also promotes the development of multimode sensing platforms.
Collapse
Affiliation(s)
- Lianhui Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingai Yin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuqi Xiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yinghua Qiu
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, 19102, USA
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
7
|
Reid C, Donlon J, Remot A, Kennedy E, De Matteis G, O’Farrelly C, McAloon C, Meade KG. Hyper-induction of IL-6 after TLR1/2 stimulation in calves with bovine respiratory disease. PLoS One 2024; 19:e0309964. [PMID: 39541407 PMCID: PMC11563416 DOI: 10.1371/journal.pone.0309964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Bovine respiratory disease (BRD) is a leading cause of mortality and compromised welfare in bovines. It is a polymicrobial syndrome resulting from a complex interplay of viral and bacterial pathogens with environmental factors. Despite the availability of vaccines, incidence and severity in young calves remains unabated. A more precise analysis of host innate immune responses during infection will identify improved diagnostic and prognostic biomarkers for early intervention and targeted treatments to prevent severe disease and loss of production efficiency. Here, we investigate hematological and innate immune responses using standardized ex-vivo whole blood assays in calves diagnosed with BRD. A total of 65 calves were recruited for this study, all between 2-8 weeks of age with 28 diagnosed with BRD by a thoracic ultrasonography score (TUS) and 19 by Wisconsin health score (WHS) and all data compared to 22 healthy controls from the same 9 study farms. Haematology revealed circulating immune cell populations were similar in both TUS positive and WHS positive calves compared to healthy controls. Gene expression analysis of 48 innate immune signalling genes in whole blood stimulated with TLR ligands was completed in a subset of calves. TLR1/2 stimulation with Pam3CSK4 showed a decreased pattern of expression in IL-1 and inflammasome related genes in addition to chemokine genes in calves with BRD. In response to TLR ligands LPS, Pam3CSK4 and R848, protein analysis of supernatant collected from all calves with BRD revealed significantly increased IL-6, but not IL-1β or IL-8, compared to healthy controls. This hyper-induction of IL-6 was observed most significantly in response to TLR1/2 stimulation in TUS positive calves. ROC analysis identified this induced IL-6 response to TLR1/2 stimulation as a potential diagnostic for BRD with a 74% true positive and 5% false positive detection rate for an IL-6 concentration >1780pg/mL. Overall, these results show altered immune responses specifically upon TLR1/2 activation is associated with BRD pathology which may contribute to disease progression. We have also identified induced IL-6 as a potentially informative biomarker for improved early intervention strategies for BRD.
Collapse
Affiliation(s)
- Cian Reid
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co Meath, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - John Donlon
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co Meath, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Aude Remot
- INRAE, Université de Tours, Nouzilly, France
| | - Emer Kennedy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Giovanna De Matteis
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, CREA-ZA, Italy
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Conor McAloon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Kieran G. Meade
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4 Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Uhuo O, Waryo T, Oranzie M, Sanga N, Leve Z, January J, Tshobeni Z, Pokpas K, Douman S, Iwuoha E. Interferon gamma (IFN-γ)-sensitive TB aptasensor based on novel chitosan-indium nano-kesterite (χtCITS)-labeled DNA aptamer hairpin technology. Bioelectrochemistry 2024; 158:108693. [PMID: 38554559 DOI: 10.1016/j.bioelechem.2024.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/01/2024]
Abstract
There has been increasing interest in the use of biosensors for diagnosis of infectious diseases such as tuberculosis (TB) due to their simplicity, affordability, and potential for point-of-care application. The incorporation of aptamer molecules and nanomaterials in biosensor fabrication explores the advantages of high-binding affinity and low immunogenicity of aptamers as well as the high surface-to-volume ratio of nanomaterials, for increased aptasensor performance. In this work, we employed a novel microwave-synthesized copper indium tin sulfide (CITS) substituted-kesterite nanomaterial, together with a natural biopolymer (chitosan), for signal amplification and increased loading of aptamer molecules. Study of the optical properties of CITS nanomaterials showed strong absorption in the UV region characteristic of kesterite semiconductor nanomaterials. X-ray diffraction analysis confirmed the presence of the kesterite phase with average crystallite size of 6.188 nm. Fabrication of interferon-gamma (IFN-γ) TB aptasensor with a chitosan-CITS nanocomposite (χtCITS) increased the aptasensor's electrochemical properties by 77.5 % and improved aptamer loading by 73.7 %. The aptasensor showed excellent sensitivity to IFN-γ concentrations with limit of detection of 6885 fg/mL (405 fM) and linear range of 850-17000 fg/mL (50 - 1000 fM). The aptasensor also exhibited excellent storage and electrochemical stability, with good selectivity towards IFN-γ and possible real sample application.
Collapse
Affiliation(s)
- Onyinyechi Uhuo
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa.
| | - Tesfaye Waryo
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Marlon Oranzie
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Nelia Sanga
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Zandile Leve
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Jaymi January
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Ziyanda Tshobeni
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Keagan Pokpas
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Samantha Douman
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa; Department of Chemistry, PD Hahn Building, 28 Chemistry Road, Upper Campus, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | - Emmanuel Iwuoha
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville 7535, Cape Town, South Africa.
| |
Collapse
|
9
|
Chavez-Pineda OG, Rodriguez-Moncayo R, Gonzalez-Suarez AM, Guevara-Pantoja PE, Maravillas-Montero JL, Garcia-Cordero JL. Portable platform for leukocyte extraction from blood using sheath-free microfluidic DLD. LAB ON A CHIP 2024; 24:2575-2589. [PMID: 38646820 DOI: 10.1039/d4lc00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Leukocyte count is routinely performed for diagnostic purposes and is rapidly emerging as a significant biomarker for a wide array of diseases. Additionally, leukocytes have demonstrated considerable promise in novel cell-based immunotherapies. However, the direct retrieval of leukocytes from whole blood is a significant challenge due to their low abundance compared to erythrocytes. Here, we introduce a microfluidic-based platform that isolates and recovers leukocytes from diluted whole blood in a single step. Our platform utilizes a novel, sheathless method to initially sediment and focus blood cells into a dense stream while flowing through a tubing before entering the microfluidic device. A hexagonal-shaped structure, patterned at the device's inlet, directs all the blood cells against the channel's outer walls. The focused cells are then separated based on their size using the deterministic lateral displacement (DLD) microfluidic technique. We evaluated various parameters that could influence leukocyte separation, including different focusing structures (assessed both computationally and experimentally), the orientation of the tubing-chip interface, the effects of blood sample hematocrit (dilution), and flow rate. Our device demonstrated the ability to isolate leukocytes from diluted blood with a separation efficiency of 100%, a recovery rate of 76%, and a purity of 80%, while maintaining a cell viability of 98%. The device operates for over 30 min at a flow rate of 2 μL min-1. Furthermore, we developed a handheld pressure controller to drive fluid flow, enhancing the operability of our platform outside of central laboratories and enabling near-patient testing. Our platform can be integrated with downstream cell-based assays and analytical methods that require high leukocyte purity (80%), ranging from cell counting to diagnostics and cell culture applications.
Collapse
Affiliation(s)
- Oriana G Chavez-Pineda
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Roberto Rodriguez-Moncayo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Alan M Gonzalez-Suarez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Pablo E Guevara-Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Jose L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City14080, Mexico
| | - Jose L Garcia-Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4058, Switzerland.
| |
Collapse
|
10
|
Nosik M, Ryzhov K, Kudryavtseva AV, Kuimova U, Kravtchenko A, Sobkin A, Zverev V, Svitich O. Decreased IL-1 β Secretion as a Potential Predictor of Tuberculosis Recurrence in Individuals Diagnosed with HIV. Biomedicines 2024; 12:954. [PMID: 38790916 PMCID: PMC11117744 DOI: 10.3390/biomedicines12050954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Background: The mechanisms of the formation of immunological competence against tuberculosis (TB), and especially those associated with HIV co-infection, remain poorly understood. However, there is an urgent need for risk recurrence predictive biomarkers, as well as for predictors of successful treatment outcomes. The goal of the study was to identify possible immunological markers of TB recurrence in individuals with HIV/TB co-infection. Methods: The plasma levels of IFN-γ, TNF-α, IL-10, and IL-1β (cytokines which play important roles in the immune activation and protection against Mycobacterium tuberculosis) were measured using ELISA EIA-BEST kits. The cytokine concentrations were determined using a standard curve obtained with the standards provided by the manufacturer of each kit. Results: A total of 211 individuals were enrolled in the study as follows: 62 patients with HIV/TB co-infection, 52 with HIV monoinfection, 52 with TB monoinfection, and 45 healthy donors. Out of the 62 patients with HIV/TB, 75.8% (47) of patients were newly diagnosed with HIV and TB, and 24.2% (15) displayed recurrent TB and were newly diagnosed with HIV. Decreased levels of IFN-γ, TNF-α, and IL-10 were observed in patients with HIV/TB when compared with HIV and TB patients. However, there was no difference in IFN-γ, TNF-α, or IL-10 secretion between both HIV/TB groups. At the same time, an almost 4-fold decrease in Il-1β levels was detected in the HIV/TB group with TB recurrence when compared with the HIV/TB group (p = 0.0001); a 2.8-fold decrease when compared with HIV patients (p = 0.001); and a 2.2-fold decrease with newly diagnosed TB patients (p = 0.001). Conclusions: Significantly decreased Il-1β levels in HIV/TB patients' cohort with secondary TB indicate that this cytokine can be a potential biomarker of TB recurrence.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Konstantin Ryzhov
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Asya V. Kudryavtseva
- La Facultad de Ciencias Médicas, Universidad Bernardo O’Higgings-Escuela de Medicina, Santiago 8370993, Chile;
| | - Ulyana Kuimova
- Central Research Institute of Epidemiology, Rospotrebnadzor, 111123 Moscow, Russia; (U.K.); (A.K.)
| | - Alexey Kravtchenko
- Central Research Institute of Epidemiology, Rospotrebnadzor, 111123 Moscow, Russia; (U.K.); (A.K.)
| | - Alexandr Sobkin
- G.A. Zaharyan Moscow Tuberculosis Clinic, Department for Treatment of TB Patients with HIV, 125466 Moscow, Russia;
| | - Vitaly Zverev
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| |
Collapse
|
11
|
Nepfumbada C, Mthombeni NH, Sigwadi R, Ajayi RF, Feleni U, Mamba BB. Functionalities of electrochemical fluoroquinolone sensors and biosensors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3394-3412. [PMID: 38110684 PMCID: PMC10794289 DOI: 10.1007/s11356-023-30223-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 12/20/2023]
Abstract
Fluoroquinolones (FQs) are a class of broad-spectrum antimicrobial agents that are used to treat variety of infectious diseases. This class of antibiotics was being used for patients exhibiting early symptoms of a human respiratory disease known as the COVID-19 virus. As a result, this outbreak causes an increase in drug-resistant strains and environmental pollution, both of which pose serious threats to biota and human health. Thus, to ensure public health and prevent antimicrobial resistance, it is crucial to develop effective detection methods for FQs determination in water bodies even at trace levels. Due to their characteristics like specificity, selectivity, sensitivity, and low detection limits, electrochemical biosensors are promising future platforms for quick and on-site monitoring of FQs residues in a variety of samples when compared to conventional detection techniques. Despite their excellent properties, biosensor stability continues to be a problem even today. However, the integration of nanomaterials (NMs) could improve biocompatibility, stability, sensitivity, and speed of response in biosensors. This review concentrated on recent developments and contemporary methods in FQs biosensors. Furthermore, a variety of modification materials on the electrode surface are discussed. We also pay more attention to the practical applications of electrochemical biosensors for FQs detection. In addition, the existing challenges, outlook, and promising future perspectives in this field have been proposed. We hope that this review can serve as a bedrock for future researchers and provide new ideas for the development of electrochemical biosensors for antibiotics detection in the future.
Collapse
Affiliation(s)
- Collen Nepfumbada
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| | - Nomcebo H Mthombeni
- Department of Chemical Engineering, Faculty of the Built Environment, Durban University of Technology, Steve Biko Campus, Durban, 4001, South Africa
| | - Rudzani Sigwadi
- Department of Chemical Engineering, University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| | - Rachel F Ajayi
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town, 7535, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa.
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| |
Collapse
|
12
|
Xia J, Bo B, Yang S, Cao Y, Cao Y, Cui H. Interfacial reactivity-modulated fluorescent metal-organic frameworks for sensitive detection of interferon-γ towards tuberculosis diagnosis. Mikrochim Acta 2023; 191:6. [PMID: 38051387 DOI: 10.1007/s00604-023-06088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
A new aptamer-based method has been developed for interferon-γ (IFN-γ) detection by utilizing interface reactivity-modulated fluorescent metal-organic frameworks (MOFs). Specifically, the binding of IFN-γ to its aptamer decreases the interface reactivity between the biotin-labeled aptamer and the streptavidin-functionalized magnetic beads by generating significant steric effects. As a result, several biotin-labeled aptamers escape from the enrichment of magnetic beads and remain in the supernatant, which subsequently undergo the terminal deoxynucleotidyl transferase-catalyzed polymerization elongation. Along with the elongation, pyrophosphate is continuously produced as the by-product, triggering the decomposition of fluorescent MOFs to generate a remarkable fluorescent response with the excitation/emission wavelength of 610 nm/685 nm. Experimental results show that the method enables the detection of IFN-γ in the range 0.06 fM to 6 pM with a detection limit of 0.057 fM. The method also displays high specificity and repeatability with an average relative standard deviation of 2.04%. Moreover, the method demonstrates satisfactory recoveries from 96.3 to 105.5% in serum samples and excellent utility in clinical blood samples. Therefore, this work may provide a valuable tool for IFN-γ detection and is expected to be of high potential in tuberculosis diagnosis in the future.
Collapse
Affiliation(s)
- Jianan Xia
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Bing Bo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Shuang Yang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yue Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Haiyan Cui
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
13
|
Zahran M, El-Shabasy RM, Elrashedy A, Mousa W, Nayel M, Salama A, Zaghawa A, Elsify A. Recent progress in the genotyping of bovine tuberculosis and its rapid diagnosis via nanoparticle-based electrochemical biosensors. RSC Adv 2023; 13:31795-31810. [PMID: 37908649 PMCID: PMC10613952 DOI: 10.1039/d3ra05606f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
Bovine tuberculosis (bTB) is considered a worldwide infectious zoonotic disease. Mycobacterium bovis causes bTB disease. It is one of the Mycobacterium tuberculosis complex (MTBC) members. MTBC is a clonal complex of close relatives with approximately 99.95% similarity. M. bovis is a spillover pathogen that can transmit from animals to humans and rarely from humans to animals with contact. Genotyping techniques are important to discriminate and differentiate between MTBC species. Spoligotyping and mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) are widely used but they have some limitations. As an alternative, whole genome sequencing approaches have been utilized due to their high-resolution power. They are employed in typing M. bovis and explain the evolutionary and phylogenetic relationships between isolates. The control of bTB disease has attracted a large amount of attention. Rapid and proper diagnosis is necessary for monitoring the disease as an initial step for its control and treatment. Nanotechnology has a potential impact on the rapid diagnosis and treatment of bTB through the use of nanocarrier and metal nanoparticles (NPs). Special attention has been paid to voltammetric and impedimetric electrochemical strategies as facile, sensitive, and selective methods for the efficient detection of tuberculosis. The efficacy of these sensors is enhanced in the presence of NPs, which act as recognition and/or redox probes. Gold, silver, copper, cobalt, graphene, and magnetic NPs, as well as polypyrrole nanowires and multiwalled carbon nanotubes have been employed for detecting tuberculosis. Overall, NP-based electrochemical sensors represent a promising tool for the diagnosis of bTB.
Collapse
Affiliation(s)
- Moustafa Zahran
- Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
- Menoufia Company for Water and Wastewater, Holding Company for Water and Wastewater Menoufia 32514 Egypt
| | - Rehan M El-Shabasy
- Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
- Chemistry Department, The American University in Cairo AUC Avenue New Cairo 11835 Egypt
| | - Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Walid Mousa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Ahmed Elsify
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| |
Collapse
|
14
|
Kobashi Y. Current status and future landscape of diagnosing tuberculosis infection. Respir Investig 2023; 61:563-578. [PMID: 37406419 DOI: 10.1016/j.resinv.2023.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 07/07/2023]
Abstract
Interferon-γ release assays (IGRAs), such as QuantiFERON-TB Gold (QFT) or T-SPOT.TB, are frequently used as tools for the diagnosis of tuberculosis (TB) infection in the 21st century. QFT-Plus recently emerged as the fourth generation of QFT assays and has replaced QFT In-Tube. However, IGRAs have several problems regarding the identification of active, latent, and cured TB infection, and the time-consuming diagnosis of TB infection because of the overnight incubation of clinical specimens or complexity of measuring the level of interferon (IFN)-γ. To easily diagnose TB infection and quickly compare it with conventional IGRAs, many in vitro tests are developed based on assays other than enzyme-linked immunosorbent assay or enzyme-linked immunospot, such as the fluorescent lateral flow assay that requires less manual operation and a shorter time. Simplified versions of IGRAs are emerging, including QIAreach QuantiFERON-TB. On the other hand, to distinguish active TB from latent or cured TB infection, new immunodiagnostic biomarkers beyond IFN-γ are evaluated using QFT supernatants. While IFN-γ or IFN-γ-related chemokine such as IFN-γ induced protein 10 is a potential biomarker in patients with active TB, interleukin-2 or latency-associated antigen such as heparin-binding hemagglutinin may be useful to distinguish active TB from latent or cured TB infection. There are no potential biomarkers to fully distinguish the time-phase of TB infection at present. It is necessary to discover new immunodiagnostic biomarkers to facilitate decisions on treatment selection for active or latent TB infection.
Collapse
Affiliation(s)
- Yoshihiro Kobashi
- Department of Respiratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, Japan.
| |
Collapse
|
15
|
Ang YS, Yung LYL. Protein-DNA Conjugates with a Discrete Number of Oligonucleotide Strands for Highly Reproducible Protein Quantification by the DNA Proximity Assay. Anal Chem 2023; 95:12071-12079. [PMID: 37523447 DOI: 10.1021/acs.analchem.3c02033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Protein-oligonucleotide conjugates are increasingly used as detection probes in biological applications such as proximity sensing and spatial biology. The preparation of high-quality conjugate probes as starting reagents is critical for achieving good and consistent performance, which we demonstrate via the DNA proximity assay (DPA) for the one-pot quantification of protein targets. We first established a complete conjugation and anion-exchange chromatography purification workflow to reproducibly obtain pure subpopulations of protein probes carrying a discrete number of oligonucleotide strands. A systematic study using the purified conjugate sub-populations confirmed that the order of conjugate (number of oligonucleotides per protein) and its purity (the absence of the unconjugated antibody) were important for ensuring optimal and reproducible assay performance. The streamlined workflow was then successfully used to conjugate a pair of universal DPA initiator oligonucleotides onto a wide range of binders including antibodies, nanobodies, and antigens which enabled the versatile detection of different types of proteins such as cytokines, total antibodies, and specific antibody isotypes. The good assay robustness (the inter-assay coefficient of variation lower than 5%) and linear calibration curve was achieved across all targets with just a single mix-and-incubate reaction step and a short reaction time of 30 min. We anticipate the streamlined protein-oligonucleotide probe preparation workflow developed in this work to have broad utility across applications leveraging the specificity of protein bio-recognition with the programmability of DNA hybridization.
Collapse
Affiliation(s)
- Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
16
|
Bolesławska I, Kowalówka M, Bolesławska-Król N, Przysławski J. Ketogenic Diet and Ketone Bodies as Clinical Support for the Treatment of SARS-CoV-2-Review of the Evidence. Viruses 2023; 15:1262. [PMID: 37376562 PMCID: PMC10326824 DOI: 10.3390/v15061262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
One of the proposed nutritional therapies to support drug therapy in COVID-19 is the use of a ketogenic diet (KD) or ketone bodies. In this review, we summarized the evidence from tissue, animal, and human models and looked at the mechanisms of action of KD/ketone bodies against COVID-19. KD/ketone bodies were shown to be effective at the stage of virus entry into the host cell. The use of β-hydroxybutyrate (BHB), by preventing the metabolic reprogramming associated with COVID-19 infection and improving mitochondrial function, reduced glycolysis in CD4+ lymphocytes and improved respiratory chain function, and could provide an alternative carbon source for oxidative phosphorylation (OXPHOS). Through multiple mechanisms, the use of KD/ketone bodies supported the host immune response. In animal models, KD resulted in protection against weight loss and hypoxemia, faster recovery, reduced lung injury, and resulted in better survival of young mice. In humans, KD increased survival, reduced the need for hospitalization for COVID-19, and showed a protective role against metabolic abnormalities after COVID-19. It appears that the use of KD and ketone bodies may be considered as a clinical nutritional intervention to assist in the treatment of COVID-19, despite the fact that numerous studies indicate that SARS-CoV-2 infection alone may induce ketoacidosis. However, the use of such an intervention requires strong scientific validation.
Collapse
Affiliation(s)
- Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| | - Magdalena Kowalówka
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| | - Natasza Bolesławska-Król
- Student Society of Radiotherapy, Collegium Medicum, University of Zielona Gora, Zyta 28, 65-046 Zielona Góra, Poland;
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| |
Collapse
|
17
|
Mao LR, Du JP, Wang XC, Xu LF, Zhang YP, Sun QS, Shi ZL, Xing YR, Su YX, Wang SJ, Wang J, Ma JL, Zhang JY. Long-Term Immunogenicity and In Vitro Prophylactic Protective Efficacy of M. tuberculosis Fusion Protein DR2 Combined with Liposomal Adjuvant DIMQ as a Boosting Vaccine for BCG. ACS Infect Dis 2023; 9:593-608. [PMID: 36808986 DOI: 10.1021/acsinfecdis.2c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The resuscitation of dormant Mycobacterium tuberculosis is an important cause of adult tuberculosis (TB) transmission. According to the interaction mechanism between M. tuberculosis and the host, the latency antigen Rv0572c and region of difference 9 (RD9) antigen Rv3621c were selected in this study to prepare the fusion protein DR2. Stimulating clinically diagnosed active tuberculosis infections (i.e., TB patients), latent tuberculosis infections, and healthy controls confirmed that T lymphocytes could recognize DR2 protein in the peripheral blood of TB-infected individuals more than subcomponent protein. The DR2 protein was then emulsified in the liposome adjuvant dimethyl dioctadecyl ammonium bromide, and imiquimod (DIMQ) was administered to C57BL/6 mice immunized with Bacillus Calmette-Guérin (BCG) vaccine to evaluate their immunogenicity. Studies have shown that DR2/DIMQ, a booster vaccine for BCG primary immunization, can elicit robust CD4+ Th1 cell immune response and predominant IFN-γ+ CD4+ effector memory T cells (TEM) subsets. Furthermore, the serum antibody level and the expression of related cytokines increased significantly with the extension of immunization time, with IL2+, CD4+, or CD8+ central memory T cells (TCM) subsets predominant in the long term. This immunization strategy showed matched prophylactic protective efficacy by performing in vitro challenge experiment. This result provides robust evidence that the novel subunit vaccine prepared by fusion protein DR2 combined with liposomal adjuvant DIMQ is a promising TB vaccine candidate for further preclinical trials as a booster vaccine for BCG.
Collapse
Affiliation(s)
- Li-Rong Mao
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Jian-Peng Du
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiao-Chun Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Li-Fa Xu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yan-Peng Zhang
- Department of Cosmetology, School of Medicine, Huainan Union University, Huainan 232038, China
| | - Qi-Shan Sun
- Department of Clinical Laboratory, Huainan Chaoyang Hospital, Huainan 232007, China
| | - Zi-Lun Shi
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan 232035, China
| | - Ying-Ru Xing
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei 230000, China
| | - Yi-Xin Su
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan 232035, China
| | - Sheng-Jian Wang
- Department of Clinical Laboratory, Huainan Chaoyang Hospital, Huainan 232007, China
| | - Jian Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Ji-Lei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Jing-Yan Zhang
- Department of Clinical Laboratory, Affiliated Heping Hospital, Changzhi Medical College, Changzhi 046000, China
| |
Collapse
|
18
|
Sun Y, Yao X, Ni Y, Peng Y, Shi G. Diagnostic Efficacy of T-SPOT.TB for Active Tuberculosis in Adult: A Retrospective Study. Infect Drug Resist 2022; 15:7077-7093. [DOI: 10.2147/idr.s388568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
|
19
|
Cheng X, Li Y, Kou J, Liao D, Zhang W, Yin L, Man S, Ma L. Novel non-nucleic acid targets detection strategies based on CRISPR/Cas toolboxes: A review. Biosens Bioelectron 2022; 215:114559. [DOI: 10.1016/j.bios.2022.114559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 12/26/2022]
|
20
|
Chalid MT, Puspawaty D, Tahir AM, Najdah H, Massi MN. Tuberculin test versus interferon gamma release assay in pregnant women with household contacts of tuberculosis patients. Int J Mycobacteriol 2022; 11:364-370. [PMID: 36510919 DOI: 10.4103/ijmy.ijmy_112_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Pregnant women who live in tuberculosis (TB)-affected households are more likely to develop latent TB infection (LTBI), which often escapes treatment. This study aims to determine if Interferon-gamma release (IGRA) is reliable in screening for LTBI in pregnant women, compare to the tuberculin skin test (TST). Methods It was a cross-sectional study that involved 60 pregnant women with TB contact history as a proxy for LTBI and 30 pregnant women without contact history. Latent TB was detected using the TST 5 tuberculin units and IGRA using the QuantiFERON Gold Plus TB Test kit (QFT-Plus). The sensitivity and specificity of the two diagnostic methods and the agreement between them were estimated using SPSS version 20.0. Results The sensitivity 95% (95% confidence interval [CI]: 86.08%-98.96%) and specificity 26.7% (95% CI: 12.28%-45.89%) of TST were compared to that of the IGRA with 60% (95% CI: 46.54%-72.44%) and 73.3% (95% CI: 54.11%-87.72%) sensitivity and specificity, respectively in detecting LTBI in pregnancy. Although there was a significant difference (P < 0.05) between TST and IGRA, the agreement was fair (kappa 0.39; 95% CI: 0.24-0.45). Conclusion TST assay is more sensitive than IGRA; however, the specificity of IGRA was superior to the TST method. In this study, a fair agreement of TST and IGRA was observed for detecting latent TB infection in pregnant women with household contact with TB patients.
Collapse
Affiliation(s)
- Maisuri Tadjuddin Chalid
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hasanuddin University Hospital, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - Dian Puspawaty
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hasanuddin University Hospital, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - Andi Mardiah Tahir
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hasanuddin University Hospital, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - Hidayah Najdah
- Postgraduate Program, Faculty of Medicine, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| | - Muhammad Nasrum Massi
- Department of Clinical Microbiology, Faculty of Medicine, Hasanuddin University Hospital, Universitas Hasanuddin, Makassar, South Sulawesi, Indonesia
| |
Collapse
|
21
|
Zhao L, Wang Q, Yin Y, Yang Y, Cui H, Dong Y. Evolution of Interferon-Gamma Aptamer with Good Affinity and Analytical Utility by a Rational In Silico Base Mutagenesis Post-SELEX Strategy. Molecules 2022; 27:molecules27175725. [PMID: 36080490 PMCID: PMC9457990 DOI: 10.3390/molecules27175725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The Systematic Evolution of Ligands by EXponential enrichment (SELEX) is conventionally an effective method to identify aptamers, which are oligonucleotide sequences with desired properties to recognize targets specifically and sensitively. However, there are some inherent limitations, e.g., the loss of potential high-affinity sequences during biased iterative PCR enrichment processes and the limited structural diversity of the initial library, which seriously restrict their real-world applications. To overcome these limitations, the in silico base mutagenesis post-SELEX strategy based on the low Gibbs free energy (ΔG) and genetic algorithm was developed for the optimization of the interferon-gamma aptamer (B1-4). In the process of evolution, new sequences were created and the aptamer candidates with low ΔG values and advanced structures were produced. After five rounds of selection, systematic studies revealed that the affinity of the newly developed evolutionary aptamer (M5-5) was roughly 10-fold higher than that of the parent aptamer (B1-4), and an aptasensor detection system with a limit-of-detection (LOD) value of 3.17 nM was established based on the evolutionary aptamer. The proposed approach provided an efficient strategy to improve the aptamer with low energy and a high binding ability, and the good analytical utility thereof.
Collapse
Affiliation(s)
- Lianhui Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qionglin Wang
- Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Yingai Yin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yan Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huifang Cui
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: ; Tel.: +86-010-64446260
| |
Collapse
|
22
|
Bioanalytical methods encompassing label-free and labeled tuberculosis aptasensors: A review. Anal Chim Acta 2022; 1234:340326. [DOI: 10.1016/j.aca.2022.340326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
|
23
|
Hekal SHA, Dapgh AN, Abd-Elhafeez MBE, Sobhy HM, Khalifa FA. Comparative diagnosis of bovine tuberculosis using single intradermal cervical tuberculin technique, conventional methods, enzyme-linked immunosorbent assay, and the gamma-interferon assay. Vet World 2022; 15:1391-1397. [PMID: 35765492 PMCID: PMC9210844 DOI: 10.14202/vetworld.2022.1391-1397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Bovine tuberculosis (TB) is a zoonotic disease that causes huge economic losses. This study aimed to compare the result obtained from the single intradermal test, conventional methods (culture and microscopy), gamma-interferon (IFN-γ) assay, and indirect enzyme-linked immunosorbent assay (ELISA) to diagnose bovine TB. Materials and Methods This study evaluated 2913 animals from milk farms in Cairo, El-Sharkia, and El-Qalyubia Governorates by single intradermal cervical tuberculin technique (SICTT), ELISA, and IFN-γ assay. Results Of the 2913 dairy cows surveyed, 3.7% yielded positive results. Culture prepared samples on Lowenstein-Jensen and Middlebrook 7H10 agar media yielded 52 (1.85%) isolates of Mycobacterium spp. from 2805 milk samples that yielded negative tuberculin reactions and 56 (51.85%) isolates of Mycobacterium spp. were recovered from 108 lymph node samples from positive cases. ELISA analysis of the sera of 108 positive SICTT reactors revealed that 94 (87.03%) and 97 (89.81%) animals were positive for bovine purified protein derivative (PPD-B) antigen and commercial polypeptide antigen, respectively. IFN-γ assays were performed on whole blood samples collected from positive SICTT reactors and showed that 103 (95.37%) animals were positive. Conclusion M. tuberculosis complex may be isolated from raw milk and not all infected animals shed mycobacterial bacilli in their milk. The use of polypeptide antigen in ELISA provides better diagnostic efficacy than PPD-B antigen. The IFN-γ assay is more sensitive than both SICTT and ELISA. It should be used in parallel with SICTT to allow the detection of more positive animals before they become a source of infection to other animals and humans.
Collapse
Affiliation(s)
| | - Amany N. Dapgh
- Department of Bacteriology, Animal Health Research Institute, Dokki, Giza, Egypt
| | - Mai Badr-Eldien Abd-Elhafeez
- Central Administration of Veterinary Quarantine, General Organization for Veterinary Services, Dokki, Giza, Egypt
| | - Hassan Mohamed Sobhy
- Department of Natural Resources, Faculty of African Postgraduate Studies, Cairo University, Giza, Egypt
| | - Fatma Ahmed Khalifa
- Department of Infectious Disease - Animal Medicine, South Valley University, Qena, Egypt
| |
Collapse
|