1
|
Song H, Hu H, Li Z, Wu Y, He C, Gao Y, Hou N, He Q, Cheng Z. Cauliflower-like CuO-ZnO modified glassy carbon electrode as an electrochemical platform for the detection of hydrogen peroxide in adulterated milk. Mikrochim Acta 2025; 192:273. [PMID: 40167820 DOI: 10.1007/s00604-025-07130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
The detection of hydrogen peroxide (H₂O₂) is a crucial process in various industries, including food safety. In this study, a cauliflower-like CuO-ZnO composite with p-n junction was successfully synthesized using a straightforward one-pot hydrothermal method. The resulting material demonstrates outstanding electrocatalytic performance for H₂O₂ detection, outperforming the individual components. The electrochemical sensor constructed from the cauliflower-like CuO-ZnO composite exhibits a well-defined linear response in the concentration range 0.0005 to 0.105 mmol·L⁻1 for H₂O₂. The sensor's limit of detection (LOD) is 0.21 µmol·L⁻1 at a signal-to-noise ratio (S/N) of 3, with a sensitivity of 1582.7 µA·(mmol·L⁻1)⁻1·cm⁻2. Furthermore, the sensor has been successfully applied to detect trace amounts of H₂O₂ in milk samples, showcasing its potential for sensitive electrochemical sensing applications.
Collapse
Grants
- [grant numbers: 2023LQGR04 and 2025QNGR23] The Longyuan youth innovation and entrepreneurship project
- [grant numbers: 2023LQGR04 and 2025QNGR23] The Longyuan youth innovation and entrepreneurship project
- [grant numbers: QY-STK-2024A-071, QY-STK-2024A-063, QY-STK-2024B-177 and QY-STK-2023A-015A] Qingyang Science and Technology Bureau Project
- [grant numbers: QY-STK-2024A-071, QY-STK-2024A-063, QY-STK-2024B-177 and QY-STK-2023A-015A] Qingyang Science and Technology Bureau Project
- [grant numbers: QY-STK-2024A-071, QY-STK-2024A-063, QY-STK-2024B-177 and QY-STK-2023A-015A] Qingyang Science and Technology Bureau Project
- [grant number: XYBYZK2222 and XYBY202009] Doctoral Starting up Foundation of Longdong University, Gansu, China
- [grant number: XYBYZK2222 and XYBY202009] Doctoral Starting up Foundation of Longdong University, Gansu, China
- [24ZYQM001] the Guiding Funds of Central Government for Supporting the Development of the Local Science and Technology
- [grant numbers: 23JRRM735], The program of Gansu department of science and technology
- [grant numbers: 2023B-205 and 2024QB-119] The Education Department Project of Gansu Province
Collapse
Affiliation(s)
- Haiyan Song
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, P.R. China.
| | - Haobin Hu
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, P.R. China
| | - Zhijun Li
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, P.R. China
| | - Yun Wu
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, P.R. China
| | - Chunxiao He
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, P.R. China
| | - Yuanyuan Gao
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, P.R. China
| | - Nana Hou
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, P.R. China
| | - Qiqi He
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, P.R. China
| | - Zhenyu Cheng
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, P.R. China.
| |
Collapse
|
2
|
Bu Y, Kim BS. Green production of functionalized few-layer borophene decorated with cerium-doped iron oxide nanoparticles for repeatable hydrogen peroxide detection. Biosens Bioelectron 2024; 260:116448. [PMID: 38820720 DOI: 10.1016/j.bios.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Functionalized few-layer borophene (FFB) was prepared using gallnut extract and coffee waste extract as natural exfoliating and stabilizing agents in an environmentally friendly ultrasonic and high shear exfoliation. Here, a facile precipitation method was employed to grow iron oxide nanoparticles doped with cerium (Ce-FeONPs) onto the surface of FFB. This intriguing combination of materials yielded Ce-FeONPs nanoparticles that exhibited exceptional peroxidase-like activity, efficiently catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) to a blue oxidized TMB (oxTMB) in the presence of hydrogen peroxide (H2O2). Additionally, the introduction of FFB contributes a reducibility effect to the catalytic oxidation of TMB, facilitating the restoration of the oxTMB to TMB. Thus, FFB-Ce-FeONPs showcase intriguing properties encompassing both oxidative and reductive characteristics, suggesting their potential as a reagent for repeated detection of H2O2. Moreover, a colorimetric sensing system enabled the liner detection of H2O2 spanning a concentration range from 0.08 to 1 mM, with a detection limit of 0.03 mM. Noteworthily, FFB-Ce-FeONPs demonstrated sustained efficacy over ten successive recycling cycles, as indicated by consistent slopes and observable color changes. In summary, this work reports the first application of nanoenzymes in repetitive H2O2 detection. Even after ten multiple cycles, the detection limit remains virtually unaltered, underscoring the robustness and enduring effectiveness of the engineered nanomaterial. The proposed simultaneous oxidation and reduction strategies for detecting H2O2 showed a commendable capability in ten cycles of H2O2 detection, thus providing a promising approach in the field of H2O2 detection.
Collapse
Affiliation(s)
- Yingjie Bu
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
3
|
Nishan U, Zahra T, Badshah A, Muhammad N, Afridi S, Shah M, Khan N, Asad M, Ullah R, Ali EA, Chen K. Colorimetric sensing of hydrogen peroxide using capped Morus nigra-sawdust deposited zinc oxide nanoparticles via Trigonella foenum extract. Front Bioeng Biotechnol 2024; 12:1338920. [PMID: 38390362 PMCID: PMC10882077 DOI: 10.3389/fbioe.2024.1338920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Hydrogen peroxide (H2O2) is one of the main byproducts of most enzymatic reactions, and its detection is very important in disease conditions. Due to its essential role in healthcare, the food industry, and environmental research, accurate H2O2 determination is a prerequisite. In the present work, Morus nigra sawdust deposited zinc oxide (ZnO) nanoparticles (NPs) were synthesized by the use of Trigonella foenum extract via a hydrothermal process. The synthesized platform was characterized by various techniques, including UV-Vis, FTIR, XRD, SEM, EDX, etc. FTIR confirmed the presence of a Zn‒O characteristic peak, and XRD showed the hexagonal phase of ZnO NPs with a 35 nm particle size. The EDX analysis confirmed the presence of Zn and O. SEM images showed that the as-prepared nanoparticles are distributed uniformly on the surface of sawdust. The proposed platform (acetic acid-capped ZnO NPs deposited sawdust) functions as a mimic enzyme for the detection of H2O2 in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) colorimetrically. To get the best results, many key parameters, such as the amount of sawdust-deposited nanoparticles, TMB concentration, pH, and incubation time were optimized. With a linear range of 0.001-0.360 μM and an R2 value of 0.999, the proposed biosensor's 0.81 nM limit of quantification (LOQ) and 0.24 nM limit of detection (LOD) were predicted, respectively. The best response for the proposed biosensor was observed at pH 7, room temperature, and 5 min of incubation time. The acetic acid-capped sawdust deposited ZnO NPs biosensor was also used to detect H2O2 in blood serum samples of diabetic patients and suggest a suitable candidate for in vitro diagnostics and commercial purposes.
Collapse
Affiliation(s)
- Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Tabassum Zahra
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Amir Badshah
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences Khyber Medical University, Peshawar, Pakistan
| | - Saifullah Afridi
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Asad
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Mechoor A, Berchmans S, Venkatachalam G. Bimetallic Cu-Zn Zeolitic Imidazolate Frameworks as Peroxidase Mimics for the Detection of Hydrogen Peroxide: Electrochemical and Spectrophotometric Evaluation. ACS OMEGA 2023; 8:39636-39650. [PMID: 37901575 PMCID: PMC10601070 DOI: 10.1021/acsomega.3c05535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
A copper incorporated zeolitic imidazolate framework-8 (ZIF-8) has been synthesized and demonstrated to be a potential material for a peroxidase mimic. The resultant bimetallic Cu-Zn incorporated MOF is used for the dual mode sensing of hydrogen peroxide by following electrochemical as well as spectrophotometric methods. Using 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic substrate, spectrophotometric studies are carried out, and the steady state kinetic parameters are determined for two different concentrations of Cu incorporated ZIF-8 (viz Cu@ZIF-8-1 and Cu@ZIF-8-2). It is found that both Cu@ZIF-8-1 and Cu@ZIF-8-2 exhibit more affinity toward the TMB substrate than the horseradish peroxidase (HRP) enzyme as indicated by the low Km values obtained for the substrate. Also, as the concentration of incorporated Cu increases, Vmax values are also found to be enhanced. Electrochemically, the Cu@ZIF-8 modified glassy carbon electrode (GCE) showed a good response for peroxide detection in the concentration range from 0.5 mM to 5 mM at a working potential of -0.25 V in PBS (pH 7.0) with a limit of detection (LOD) value of 0.46 mM and a sensitivity of 20.25 μA/mM. Further, the chromogenic substrate TMB is successfully immobilized on the electrode surface and subsequently used for the peroxide detection along with Cu@ZIF-8. Here, TMB acts as a mediator and shifted the working potential to 0.1 V in acetate buffer (pH 5.0) in the concentration range from 0.5 mM to 5 mM with an LOD value of 0.499 mM and a sensitivity of 0.097 μA/mM. Interestingly, the same electrode in PBS of pH 7.0 showed a response to peroxide at a working potential of -0.1 V in the concentration range from 0.5 mM to 5 mM with an LOD value of 0.143 mM and a sensitivity of 0.33 μA/mM. Moreover, the applicability of this material for peroxide sensing is evaluated using milk samples, and the proposed material is able to recover the peroxide present in milk. Thus, the bimetallic Cu-Zn MOF can be utilized for the dual mode sensing of peroxide and can be extended for various real time applications.
Collapse
Affiliation(s)
- Aswathi Mechoor
- Electrodics
and Electrocatalysis (EEC) Division, CSIR—Central
Electrochemical Research Institute (CSIR—CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy
of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Sheela Berchmans
- Electrodics
and Electrocatalysis (EEC) Division, CSIR—Central
Electrochemical Research Institute (CSIR—CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy
of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Ganesh Venkatachalam
- Electrodics
and Electrocatalysis (EEC) Division, CSIR—Central
Electrochemical Research Institute (CSIR—CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy
of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Gao S, Liu K, Ji X, Cui Y, Li R, Ma G, Zhang Y, Wang L. Biocompatible Palladium Nanoparticles Prepared Using Vancomycin for Colorimetric Detection of Hydroquinone. Polymers (Basel) 2023; 15:3148. [PMID: 37514537 PMCID: PMC10386051 DOI: 10.3390/polym15143148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Hydroquinone poses a major threat to human health and is refractory to degradation, so it is important to establish a convenient detection method. In this paper, we present a novel colorimetric method for the detection of hydroquinone based on a peroxidase-like Pd nanozyme. The vancomycin-stabilized palladium nanoparticles (Van-Pdn NPs, n = 0.5, 1, 2) were prepared using vancomycin as a biological template. The successful synthesis of Van-Pdn NPs (n = 0.5, 1, 2) was demonstrated by UV-vis spectrophotometry, transmission electron microscopy, and X-ray diffraction. The sizes of Pd nanoparticles inside Van-Pd0.5 NPs, Van-Pd1 NPs, and Van-Pd2 NPs were 2.6 ± 0.5 nm, 2.9 ± 0.6 nm, and 4.3 ± 0.5 nm, respectively. Furthermore, Van-Pd2 NPs exhibited excellent biocompatibility based on the MTT assay. More importantly, Van-Pd2 NPs had good peroxidase-like activity. A reliable hydroquinone detection method was established based on the peroxidase-like activity of Van-Pd2 NPs, and the detection limit was as low as 0.323 μM. Therefore, vancomycin improved the peroxidase-like activity and biocompatibility of Van-Pd2 NPs. Van-Pd2 NPs have good application prospects in the colorimetric detection of hydroquinone.
Collapse
Affiliation(s)
- Shoubei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Kai Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Xianbing Ji
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Yanshuai Cui
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Ruyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Guanglong Ma
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Yongqiang Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-Biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
6
|
Fang Q, Wang J, Wu S, Leung KCF, Xu Y, Xuan S. NIR-induced improvement of catalytic activity and antibacterial performance over AuAg nanorods in Rambutan-like Fe 3O 4@AgAu@PDA magnetic nanospheres. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130616. [PMID: 37056020 DOI: 10.1016/j.jhazmat.2022.130616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/19/2023]
Abstract
Pathogenic bacteria and difficult-to-degrade pollutants in water have been serious problems that always plague people. Therefore, finding a "one stone-two birds" method that can quickly catalyze the degradation of pollutants and show effective antibacterial behavior become an urgent requirement. This work reports a facile one-step strategy for fabricating a Rambutan-like Fe3O4@AgAu@PDA (Fe3O4@AgAu@Polydopamine) core/shell nanosphere with both catalytic and antibacterial activities which can be critically improved by externally applying an NIR laser irradiation (NIR, 808 nm) and a rotating magnetic field. Typically, the Rambutan-like Fe3O4@AgAu@PDA nanosphere have a rather rough surface due to the AuAg bimetallic nanorods sandwiched between the Fe3O4 core and the PDA shell. Owing to the penetrated PDA shell, AgAu nanorods show high and magnetically recyclable photothermal-enhanced catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol and they can also be applied to initiate TMB oxidation under the help of NIR heating condition. Moreover, Fe3O4@AgAu@PDA shows a moderate antibacterial activity due to the weak release of Ag+. Under applying a rotating external magnetic field, the rough-surface Fe3O4@AgAu@PDA nanospheres produce a controllable magnetolytic force on the bacterial due to their good affinity. As a result, the Fe3O4@AgAu@PDA nanospheres show a "magnetolytic-photothermal-Ag+" synergistic antibacterial behavior against E. coli and S. aureus.
Collapse
Affiliation(s)
- Qunling Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - ShanShan Wu
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, PR China
| | - Ken Cham-Fai Leung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region of China.
| | - Yunqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| |
Collapse
|
7
|
Liu Y, Sun M, Qiao W, Cong S, Zhang Y, Wang L, Hu Z, Liu F, Wang D, Wang P, Liu Q. Multicolor colorimetric visual detection of Staphylococcus aureus based on Fe 3O 4-Ag-MnO 2 composites nano-oxidative mimetic enzyme. Anal Chim Acta 2023; 1239:340654. [PMID: 36628750 DOI: 10.1016/j.aca.2022.340654] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Novel Fe3O4-Ag-MnO2 composites were successfully synthesized. It was noteworthy that the obtained Fe3O4-Ag-MnO2 composites were found to possess three types of enzyme-mimicking activities, including peroxidase-like, catalase-like and oxidase-like activities. Taking advantage of the oxidase properties of Fe3O4-Ag-MnO2, the direct oxidation of TMB could be catalyzed to generate blue oxidation products without H2O2. The oxidase-like activity of Fe3O4-Ag-MnO2 were carefully studied. Based on the Fe3O4-Ag-MnO2-TMB system, a fast, sensitive and intuitive multicolor colorimetric method for Staphylococcus aureus (S. aureus) detection was established under the optimized conditions. The proposed method allows the detection of S. aureus with a detection limit of 3.7 cfu mL-1 and a linear range of 10-106 cfu mL-1. This new colorimetric method has been successfully proved to be applicable to the detection S. aureus of food samples.
Collapse
Affiliation(s)
- Yushen Liu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China.
| | - Mengyue Sun
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Wenteng Qiao
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Shuang Cong
- College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Yunqian Zhang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Luliang Wang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Zhenhua Hu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Fangjie Liu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Dacheng Wang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Ping Wang
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
| | - Quanwen Liu
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China.
| |
Collapse
|
8
|
Lin J, Zhuang Y, Chen J, Han Z, Chen J. TiO 2-In-MIL-101(Cr) with Visible Light-Induced Peroxidase Activity for Colorimetric Detection of Blood Glucose. ACS OMEGA 2022; 7:45527-45534. [PMID: 36530260 PMCID: PMC9753185 DOI: 10.1021/acsomega.2c06176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this work, metal-organic framework MIL-101(Cr) with regular morphology, stable structure, and good dispersion was prepared by the hydrothermal method. MIL-101(Cr) has two different sizes of pores, but after TiO2 nanoparticles (NPs) were in situ prepared, the two pores disappear. The result demonstrates that TiO2 NPs were located in the pores of MIL-101(Cr). TiO2-decorated MIL-101(Cr) forms an inside type II heterojunction and the band gap energy is narrowed, which can promote electron-hole separation and enhance the light absorption. Therefore, the heterojunction shows a high visible light-induced peroxidase-like activity. Kinetic studies exhibit that the K m value of TiO2-in-MIL-101(Cr) to TMB is 0.17 mM, and the affinity of TiO2-in-MIL-101(Cr) is higher than that of natural horseradish peroxidase (HRP). Then, a "turn-on" colorimetric assay based on TiO2-in-MIL-101(Cr) was constructed for the detection of blood glucose. The detection range is 1-100 μM (R 2 = 0.9950) with a limit of detection (LOD) of 1.17 μM. Compared with the clinical method, the constructed colorimetric method has accurate and reliable results for the clinical detection. The anti-interference experiment confirms that the method has high selectivity to glucose.
Collapse
Affiliation(s)
- Jianwei Lin
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Yafeng Zhuang
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Jing Chen
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Zhizhong Han
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Jinghua Chen
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| |
Collapse
|
9
|
Yang H, Li K, Wang Y, Yuan X, Zhang M. A label-free strategy for H2O2 assay by chemical vapor generation-atomic fluorescence spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Zhu D, He P, Kong H, Yang G, Luan X, Wei G. Biomimetic graphene-supported ultrafine platinum nanowires for colorimetric and electrochemical detection of hydrogen peroxide. J Mater Chem B 2022; 10:9216-9225. [PMID: 36314985 DOI: 10.1039/d2tb02132c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The detection of hydrogen peroxide (H2O2) is of great significance in environmental monitoring, enzymatic reactions, and disease diagnosis. Here we present the peptide-mediated biomimetic synthesis of ultrafine platinum nanowires (PtNWs) on graphene oxide (GO) nanosheets for the formation of functional hybrids, which show high potential for the fabrication of colorimetric and electrochemical sensors for the detection of H2O2 with high performance. A multifunctional peptide with the sequence KIIIIKYWYAF was designed to create peptide nanofibers (PNFs) via a controllable self-assembly process, which serves as a bridge between GO nanosheets and PtNWs to form PtNWs-PNFs/GO hybrids. On this basis, a dual-mode sensor platform for both colorimetric and electrochemical sensing of H2O2 was fabricated successfully. The obtained results indicate that the synthesized PtNWs-PNFs/GO hybrids could catalyze the decomposition of H2O2 to generate ˙OH radicals with a significant current response, and the ˙OH radicals are capable of overoxidizing 3,3',5,5',-tetramethylbenzidine (TMB), producing a blue-colored species with a distinct color change for colorimetric sensing. In addition, due to its high catalytic activity, the fabricated PtNWs-PNFs/GO hybrid-based electrochemical sensor exhibits a wider linear detection range of 0.05 μM-15 mM and a low detection limit of 0.0206 μM, which can be applied to detect H2O2 with high selectivity and sensitivity. Our study provides a green and environmentally friendly synthetic strategy for the preparation of biomimetic materials from PtNWs, and the fabricated colorimetric/electrochemical dual-mode H2O2 sensor platform will have a great impact in bioanalysis, environmental monitoring, and biomedicine.
Collapse
Affiliation(s)
- Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China
| |
Collapse
|
11
|
Rasheed Q, Ajab H, Farooq M, Shahzad SA, Yaqub A. Fabrication of colorimetric sensor using Fe3O4 @ Musa paradisiaca L. nanoparticles for detecting hydrogen peroxide: an application in environmental and biological samples. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02571-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|