1
|
Dong Z, Jiang W, Wu C, Chen T, Chen J, Ding X, Zheng S, Piatkevich KD, Zhu Y, Guo T. Spatial proteomics of single cells and organelles on tissue slides using filter-aided expansion proteomics. Nat Commun 2024; 15:9378. [PMID: 39477916 PMCID: PMC11525631 DOI: 10.1038/s41467-024-53683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Hydrogel-based tissue expansion combined with mass spectrometry (MS) offers an emerging spatial proteomics approach. Here, we present a filter-aided expansion proteomics (FAXP) strategy for spatial proteomics analysis of archived formalin-fixed paraffin-embedded (FFPE) specimens. Compared to our previous ProteomEx method, FAXP employed a customized tip device to enhance both the stability and throughput of sample preparation, thus guaranteeing the reproducibility and robustness of the workflow. FAXP achieved a 14.5-fold increase in volumetric resolution. It generated over 8 times higher peptide yield and a 255% rise in protein identifications while reducing sample preparation time by 50%. We also demonstrated the applicability of FAXP using human colorectal FFPE tissue samples. Furthermore, for the first time, we achieved bona fide single-subcellular proteomics under image guidance by integrating FAXP with laser capture microdissection.
Collapse
Affiliation(s)
- Zhen Dong
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Wenhao Jiang
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Chunlong Wu
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Ting Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiayi Chen
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Xuan Ding
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kiryl D Piatkevich
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
| | - Yi Zhu
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
| | - Tiannan Guo
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Bury A, Pyle A, Vincent AE, Actis P, Hudson G. Nanobiopsy investigation of the subcellular mtDNA heteroplasmy in human tissues. Sci Rep 2024; 14:13789. [PMID: 38877095 PMCID: PMC11178779 DOI: 10.1038/s41598-024-64455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Mitochondrial function is critical to continued cellular vitality and is an important contributor to a growing number of human diseases. Mitochondrial dysfunction is typically heterogeneous, mediated through the clonal expansion of mitochondrial DNA (mtDNA) variants in a subset of cells in a given tissue. To date, our understanding of the dynamics of clonal expansion of mtDNA variants has been technically limited to the single cell-level. Here, we report the use of nanobiopsy for subcellular sampling from human tissues, combined with next-generation sequencing to assess subcellular mtDNA mutation load in human tissue from mitochondrial disease patients. The ability to map mitochondrial mutation loads within individual cells of diseased tissue samples will further our understanding of mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Alexander Bury
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, UK
- Bragg Centre for Materials Research, Leeds, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK.
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, UK.
- Bragg Centre for Materials Research, Leeds, UK.
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK.
| |
Collapse
|
3
|
Zhang L, Wahab OJ, Jallow AA, O’Dell ZJ, Pungsrisai T, Sridhar S, Vernon KL, Willets KA, Baker LA. Recent Developments in Single-Entity Electrochemistry. Anal Chem 2024; 96:8036-8055. [PMID: 38727715 PMCID: PMC11112546 DOI: 10.1021/acs.analchem.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- L. Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - O. J. Wahab
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - A. A. Jallow
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Z. J. O’Dell
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - T. Pungsrisai
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - S. Sridhar
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - K. L. Vernon
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - K. A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - L. A. Baker
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
4
|
Marcuccio F, Chau CC, Tanner G, Elpidorou M, Finetti MA, Ajaib S, Taylor M, Lascelles C, Carr I, Macaulay I, Stead LF, Actis P. Single-cell nanobiopsy enables multigenerational longitudinal transcriptomics of cancer cells. SCIENCE ADVANCES 2024; 10:eadl0515. [PMID: 38446884 PMCID: PMC10917339 DOI: 10.1126/sciadv.adl0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Single-cell RNA sequencing has revolutionized our understanding of cellular heterogeneity, but routine methods require cell lysis and fail to probe the dynamic trajectories responsible for cellular state transitions, which can only be inferred. Here, we present a nanobiopsy platform that enables the injection of exogenous molecules and multigenerational longitudinal cytoplasmic sampling from a single cell and its progeny. The technique is based on scanning ion conductance microscopy (SICM) and, as a proof of concept, was applied to longitudinally profile the transcriptome of single glioblastoma (GBM) brain tumor cells in vitro over 72 hours. The GBM cells were biopsied before and after exposure to chemotherapy and radiotherapy, and our results suggest that treatment either induces or selects for more transcriptionally stable cells. We envision the nanobiopsy will contribute to transforming standard single-cell transcriptomics from a static analysis into a dynamic assay.
Collapse
Affiliation(s)
- Fabio Marcuccio
- Faculty of Medicine, Imperial College London, London, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Chalmers C. Chau
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Georgette Tanner
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Marilena Elpidorou
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Martina A. Finetti
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Shoaib Ajaib
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Morag Taylor
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Carolina Lascelles
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Ian Carr
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Iain Macaulay
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Lucy F. Stead
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Paolo Actis
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|