1
|
Huang L, Luo Y, Li X, Wu J, Long Q, Zheng L, Liao W, Li H, Jia L, Liu K. Electrochemical sensor based on molecularly imprinted polypyrrole-MWCNTs-OH/covalent organic framework for the detection of ofloxacin in water. Mikrochim Acta 2024; 192:3. [PMID: 39627597 DOI: 10.1007/s00604-024-06860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
A platform was developed to accurately detect the content of ofloxacin (OFX) based on molecularly imprinted polypyrrole-MWCNTs-OH/1,3,5-Tris(4-aminophenyl) benzene (TAPB)-2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMTP)-covalent organic framework (MIP-MWCNTs-OH/COF)-modified glassy carbon electrode (GCE) sensor (MIP-MWCNTs-OH/COF/GCE). The complex of MWCNTs-OH and COF synergistically enhanced the active area and electrochemical signal, based on which a molecularly imprinted membrane was polymerized on its surface to further improve the selectivity. Under optimized conditions, the prepared MIP-MWCNTs-OH/COF/GCE sensor exhibited strong detection performance to OFX in a linear range 1.969 × 10-11-9.619 × 10-9 M with the limit of detection (LOD, 3S/N) of 4.989 × 10-12 M, excellent selectivity, stability, and reproducibility. Furthermore, the MIP-MWCNTs-OH/COF/GCE sensor can be successfully applied to the detection of OFX in lake water and eye drops with a relative standard deviation (RSD) of less than 4.95%, indicating its high potential in practical applications.
Collapse
Affiliation(s)
- Lijuan Huang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Yuan Luo
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xulin Li
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Juan Wu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qian Long
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Li Zheng
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Wenlong Liao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Huiming Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lingpu Jia
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Kunping Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
2
|
Qureshi A, Shah A, Iftikhar FJ, Haleem A, Zia MA. Electrochemical analysis of anticancer and antibiotic drugs in water and biological specimens. RSC Adv 2024; 14:36633-36655. [PMID: 39559583 PMCID: PMC11570916 DOI: 10.1039/d4ra05685j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
The increasing prevalence of pharmaceuticals in water and complex matrices necessitates accurate measurement and monitoring of their environmental contamination levels. This is crucial not only for environmental conservation but also for comprehending the intricate mechanisms involved and developing more effective treatment approaches. In this context, electrochemical techniques show significant potential for the detection of pharmaceuticals across various matrices. Specifically, voltammetry is advantageous due to its rapid, straightforward, and cost-effective nature, allowing for the simultaneous analysis of multiple anticancer and antibiotic drugs. By utilizing nanomaterial-modified electrochemical sensors, the sensitivity and selectivity of detection methods can be significantly improved. The small size and customizable properties of nanomaterials enable these sensors to identify trace amounts of drugs in diverse samples. However, challenges persist in achieving reliable and accurate electrochemical monitoring of drugs in water and biological samples. Biofluids such as saliva, urine, and blood/serum, along with environmental samples from lakes and rivers, often contain numerous interfering substances that can diminish analyte signals. This review examines electrochemical methods and their potential applications for detecting pharmaceuticals and their metabolites, while also addressing the mechanisms of action and harmful effects of these drugs on both ecosystems and human health. Recent developments in electrochemical sensors utilizing nanomaterials for the detection of health-threatening pharmaceutical contaminants are examined, providing important insights into their underlying mechanisms. The emphasis is placed on the detection of anticancer agents and antibiotics, which relies on the electrocatalytic properties of the sensor materials. Additionally, discussions on density functional theory studies are included, along with an exploration of the emerging challenges and future directions in this area, aimed at enhancing readers' comprehension of the field and underscoring the necessary actions for a sustainable future.
Collapse
Affiliation(s)
- Ayesha Qureshi
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Abdul Haleem
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Abid Zia
- Department of Chemistry, University of Education Attock Punjab 43600 Pakistan
| |
Collapse
|
3
|
Liu J, Shi J, Zhong M, Wang Y, Zhang X, Wang W, Chen Z, Tan Y, Xu D, Yang S, Li L. A novel electrochemical sensing method based on an amino-functionalized MXene for the rapid and selective detection of Hg 2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:244-252. [PMID: 38105765 DOI: 10.1039/d3ay01652h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mercury is a highly toxic element that is widely present in all types of environmental media and can accumulate in living organisms. Prolonged exposure to high levels of mercury can lead to brain damage and death, so the detection of mercury is of great importance. In this study, a cost-effective and easy-to-operate electrochemical sensing method was successfully developed based on an amino-functionalized titanium-based MXene (NH2-Ti3C2Tx) for the rapid and selective detection of Hg2+ that could have a coordination effect with the -NH2 group of NH2-Ti3C2Tx to promote the efficient accumulation of Hg2+. In this strategy, the NH2-Ti3C2Tx was first modified on glassy carbon electrodes (GCE) to fabricate the electrochemical sensor. Benefiting from the excellent electrical conductivity, abundant active sites, and strong adsorption capacity performance of the NH2-Ti3C2Tx, the NH2-Ti3C2Tx modified GCE (NH2-Ti3C2Tx/GCE) exhibited satisfactory selectivity and enhanced square wave anodic stripping voltammetry (SWASV) measurement for the rapid detection of trace amounts of Hg2+ in aqueous solutions. The electrochemical sensor was found to be capable of detecting Hg2+ with a low detection limit of 8.27 nmol L-1 and a linear range of 0.5 μmol L-1 to 50 μmol L-1. The response time of the electrochemical sensing method was 308 s. In addition, the electrochemical sensing method has good selectivity, repeatability and stability, and multiple heavy metal ions have no effect on its detection, with repeatability and stability RSDs of 1.68% and 1.43%, respectively. Furthermore, the analysis of practical water samples demonstrated that the developed method was highly practical for the actual determination of Hg2+ with recoveries in the range of 99.22-101.90%.
Collapse
Affiliation(s)
- Jinquan Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
| | - Jiao Shi
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
| | - Miao Zhong
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
| | - Yating Wang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
| | - Xinxin Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
| | - Wenyu Wang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
| | - Zhijun Chen
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
| | - Yan Tan
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
| | - Dongyun Xu
- Hengyang Center for Disease Control and Prevention, Hengyang, Hunan, 421001, People's Republic of China
| | - Shengyuan Yang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
| | - Le Li
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
| |
Collapse
|
4
|
Khodari M, Assaf HF, Shamroukh AA, Rabie EM. Fabrication of an electrochemical sensor based on eggshell waste recycling for the voltammetric simultaneous detection of the antibiotics ofloxacin and ciprofloxacin. BMC Chem 2023; 17:131. [PMID: 37777805 PMCID: PMC10544171 DOI: 10.1186/s13065-023-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
In this work, an accurate, highly sensitive, and economical electrochemical sensor based on a carbon paste electrode modified by Ca2CuO3 nanostructure (Ca2CuO3 NS) was constructed using Eggshell waste recycling as a cheap source of calcium. The Ca2CuO3 NS was analyzed using FTIR, SEM, and XRD measurements. The synthesized nanomaterials utilized for the first time to enhance the electrocatalytic efficiency of carbon paste electrode (CPE) toward fluoroquinolones antibiotics ofloxacin (OFL) and ciprofloxacin (CIP), The drugs used to treat pneumonia caused by COVID-19. The synthesized Ca2CuO3 NS dramatically enhanced the anodic peak response of CPE toward both drugs compared to the unmodified one and other modified electrodes. The simultaneous detection of the two antibiotics was performed in the linear range of 0.09-1.0 μM for OFL and 0.05-0.8 μM for CIP with the LOD of 0.027 μM and 0.012 μM, respectively. The suggested method was applied successfully to determine OFL and CIP in real samples.
Collapse
Affiliation(s)
- M Khodari
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83521, Egypt.
| | - H F Assaf
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83521, Egypt
| | - Ahmed A Shamroukh
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83521, Egypt
| | - E M Rabie
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83521, Egypt
| |
Collapse
|