1
|
de Haas B, Dhooghe E, Geelen D. Root Exudates in Soilless Culture Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:479. [PMID: 39943041 PMCID: PMC11821189 DOI: 10.3390/plants14030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Root metabolite secretion plays a critical role in increasing nutrient acquisition, allelopathy, and shaping the root-associated microbiome. While much research has explored the ecological functions of root exudates, their relevance to horticultural practices, particularly soilless cultivation, remains underexplored. Steering root exudation could help growers enhance the effectiveness of plant growth-promoting bacteria. This review summarizes current knowledge on root exudation in soilless systems, examining its process and discussing environmental influences in the context of soilless cultivation. Plants in soilless systems exhibit higher total carbon exudation rates compared to those in natural soils, with exudation profiles varying across systems and species. Root exudation decreases with plant age, with most environmental adaptations occurring during early growth stages. Several environmental factors unique to soilless systems affect root exudation. For instance, nutrient availability has a major impact on root exudation. Light intensity reduces exudation rates, and light quality influences exudation profiles in a species- and environment-dependent manner. Elevated CO2 and temperature increase exudation. Factors related to the hydroponic nutrient solution and growing media composition remain insufficiently understood, necessitating further research.
Collapse
Affiliation(s)
| | | | - Danny Geelen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium; (B.d.H.); (E.D.)
| |
Collapse
|
2
|
Coker HR, Lin HA, Shackelford CEB, Tfaily MM, Smith AP, Howe JA. Drought stimulates root exudation of organic nitrogen in cotton ( Gossypium hirsutem). FRONTIERS IN PLANT SCIENCE 2024; 15:1431004. [PMID: 39628529 PMCID: PMC11611595 DOI: 10.3389/fpls.2024.1431004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024]
Abstract
Root exudation of N is a plant input to the soil environment and may be differentially regulated by the plant during drought. Organic N released by root systems has important implications in rhizosphere biogeochemical cycling considering the intimate coupling of C and N dynamics by microbial communities. Besides amino acids, diverse molecules exuded by root systems constitute a significant fraction of root exudate organic N but have yet to receive a metabolomic and quantitative investigation during drought. To observe root exudation of N during drought, mature cotton plants received progressive drought and recovery treatments in an aeroponic system throughout their reproductive stage and were compared to control plants receiving full irrigation. Root exudates were nondestructively sampled from the same plants at 9 timepoints over 18 days. Total organic C and N were quantified by combustion, inorganic N with spectrophotometric methods, free amino acids by high performance liquid chromatography (HPLC), and untargeted metabolomics by Fourier-transform ion cyclotron resonance-mass spectrometry (FT-ICR-MS). Results indicate that organic N molecules in root exudates were by far the greatest component of root exudate total N, which accounted for 20-30% of root exudate mass. Drought increased root exudation of organic N (62%), organic C (6%), and free amino acid-N (562%), yet free amino acids were <5% of the N balance. Drought stress significantly increased root exudation of serine, aspartic acid, asparagine, glutamic acid, tryptophan, glutamine, phenylalanine, and lysine compared to the control. There was a total of 3,985 molecules detected across root exudate samples, of which 41% contained N in their molecular formula. There were additionally 349 N-containing molecules unique to drought treatment and 172 unique to control. Drought increased the relative abundance and redistributed the molecular weights of low molecular weight N-containing molecules. Time-series analysis revealed root exudation of organic N was stimulated by drought and was sensitive to the degree of drought stress.
Collapse
Affiliation(s)
- Harrison R. Coker
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife, College Station, TX, United States
| | - Heng-An Lin
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife, College Station, TX, United States
| | - Caleb E. B. Shackelford
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife, College Station, TX, United States
| | - Malak M. Tfaily
- Department of Environmental Sciences, University of Arizona, Tucson, AZ, United States
| | - A. Peyton Smith
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife, College Station, TX, United States
| | - Julie A. Howe
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife, College Station, TX, United States
| |
Collapse
|
3
|
Hathurusinghe SHK, Azizoglu U, Shin JH. Holistic Approaches to Plant Stress Alleviation: A Comprehensive Review of the Role of Organic Compounds and Beneficial Bacteria in Promoting Growth and Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:695. [PMID: 38475541 DOI: 10.3390/plants13050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Plants select microorganisms from the surrounding bulk soil, which act as a reservoir of microbial diversity and enrich a rhizosphere microbiome that helps in growth and stress alleviation. Plants use organic compounds that are released through root exudates to shape the rhizosphere microbiome. These organic compounds are of various spectrums and technically gear the interplay between plants and the microbial world. Although plants naturally produce organic compounds that influence the microbial world, numerous efforts have been made to boost the efficiency of the microbiome through the addition of organic compounds. Despite further crucial investigations, synergistic effects from organic compounds and beneficial bacteria combinations have been reported. In this review, we examine the relationship between organic compounds and beneficial bacteria in determining plant growth and biotic and abiotic stress alleviation. We investigate the molecular mechanism and biochemical responses of bacteria to organic compounds, and we discuss the plant growth modifications and stress alleviation done with the help of beneficial bacteria. We then exhibit the synergistic effects of both components to highlight future research directions to dwell on how microbial engineering and metagenomic approaches could be utilized to enhance the use of beneficial microbes and organic compounds.
Collapse
Affiliation(s)
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri 38039, Turkey
- Genome and Stem Cell Research Center, Erciyes University, Kayseri 38039, Turkey
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Santangeli M, Steininger-Mairinger T, Vetterlein D, Hann S, Oburger E. Maize (Zea mays L.) root exudation profiles change in quality and quantity during plant development - A field study. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111896. [PMID: 37838155 DOI: 10.1016/j.plantsci.2023.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Deciphering root exudate composition of soil-grown plants is considered a crucial step to better understand plant-soil-microbe interactions affecting plant growth performance. In this study, two genotypes of Zea mays L. (WT, rth3) differing in root hair elongation were grown in the field in two substrates (sand, loam) in custom-made, perforated columns inserted into the field plots. Root exudates were collected at different plant developmental stages (BBCH 14, 19, 59, 83) using a soil-hydroponic-hybrid exudation sampling approach. Exudates were characterized by LC-MS based non-targeted metabolomics, as well as by photometric assays targeting total dissolved organic carbon, soluble carbohydrates, proteins, amino acids, and phenolics. Results showed that plant developmental stage was the main driver shaping both the composition and quantity of exuded compounds. Carbon (C) exudation per plant increased with increasing biomass production over time, while C exudation rate per cm² root surface area h-1 decreased with plant maturity. Furthermore, exudation rates were higher in the substrate with lower nutrient mobility (i.e., loam). Surprisingly, we observed higher exudation rates in the root hairless rth3 mutant compared to the root hair-forming WT sibling, though exudate metabolite composition remained similar. Our results highlight the impact of plant developmental stage on the plant-soil-microbe interplay.
Collapse
Affiliation(s)
- Michael Santangeli
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Science, Institute of Soil Research, 3430 Tulln an der Donau, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, 1190 Vienna, Austria
| | - Teresa Steininger-Mairinger
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, 1190 Vienna, Austria
| | - Doris Vetterlein
- Department of Soil System Science, UFZ, 06120 Halle/Saale, Germany; Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, 1190 Vienna, Austria
| | - Eva Oburger
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Science, Institute of Soil Research, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
5
|
Lin HA, Coker HR, Howe JA, Tfaily MM, Nagy EM, Antony-Babu S, Hague S, Smith AP. Progressive drought alters the root exudate metabolome and differentially activates metabolic pathways in cotton ( Gossypium hirsutum). FRONTIERS IN PLANT SCIENCE 2023; 14:1244591. [PMID: 37711297 PMCID: PMC10499043 DOI: 10.3389/fpls.2023.1244591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Root exudates comprise various primary and secondary metabolites that are responsive to plant stressors, including drought. As increasing drought episodes are predicted with climate change, identifying shifts in the metabolome profile of drought-induced root exudation is necessary to understand the molecular interactions that govern the relationships between plants, microbiomes, and the environment, which will ultimately aid in developing strategies for sustainable agriculture management. This study utilized an aeroponic system to simulate progressive drought and recovery while non-destructively collecting cotton (Gossypium hirsutum) root exudates. The molecular composition of the collected root exudates was characterized by untargeted metabolomics using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) and mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Over 700 unique drought-induced metabolites were identified throughout the water-deficit phase. Potential KEGG pathways and KEGG modules associated with the biosynthesis of flavonoid compounds, plant hormones (abscisic acid and jasmonic acid), and other secondary metabolites were highly induced under severe drought, but not at the wilting point. Additionally, the associated precursors of these metabolites, such as amino acids (phenylalanine and tyrosine), phenylpropanoids, and carotenoids, were also mapped. The potential biochemical transformations were further calculated using the data generated by FT-ICR MS. Under severe drought stress, the highest number of potential biochemical transformations, including methylation, ethyl addition, and oxidation/hydroxylation, were identified, many of which are known reactions in some of the mapped pathways. With the application of FT-ICR MS, we revealed the dynamics of drought-induced secondary metabolites in root exudates in response to drought, providing valuable information for drought-tolerance strategies in cotton.
Collapse
Affiliation(s)
- Heng-An Lin
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Harrison R. Coker
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Julie A. Howe
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Malak M. Tfaily
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Elek M. Nagy
- Department of Plant Pathology and Microbiology, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Sanjay Antony-Babu
- Department of Plant Pathology and Microbiology, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Steve Hague
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - A. Peyton Smith
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| |
Collapse
|