1
|
Hu B, Tang X, Zhang Y, Ruan Y, Shang X, Duan F, Zhang S, Zhang Z. Complementary dual-modal immunosensing strategy for accurate detecting zearalenone based on bimetallic NiFe-Prussian blue analogue. Talanta 2025; 293:128165. [PMID: 40245794 DOI: 10.1016/j.talanta.2025.128165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
In this work, a complementary dual-modal immunosensing strategy was fabricated for the sensitive and selective detection of zearalenone (ZEN) by integrating immunochromatographic and electrochemical biosensing methods. For this, bimetallic NiFe Prussian blue analogue (NiFe-PBA) was simultaneously employed as a matrix for labelling ZEN-targeted antibody and the sensitive layer for anchoring antibody to construct an efficient immunochromatographic immunosensor (ICI) and electrochemical immunosensor (ECI), respectively. Due to porous network, good functionality, high bioaffinity, and rich metal redox, NiFe-PBA-based complementary dual-modal immunosensor exhibited low limit of detection, high selectivity and stability, and accepted practicality. Particularly, the developed ECI illustrated fast response, portability, and potentially commercial application. Coupling the ICI and ECI sensing strategy can markedly enhance the accuracy and sensitive detection of ZEN in complicated environments. This dual-modal ICI-ECI immunosensing strategy exhibits significant potential for the precise detection of mycotoxin in various agricultural products and improve the quality control for foods.
Collapse
Affiliation(s)
- Bin Hu
- Colleges of Material Engineering, Henan University of Engineering, Zhengzhou, 451191, PR China.
| | - Xiaowu Tang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Yinpeng Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Yiming Ruan
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Xiaohong Shang
- Colleges of Material Engineering, Henan University of Engineering, Zhengzhou, 451191, PR China
| | - Fenghe Duan
- Colleges of Material Engineering, Henan University of Engineering, Zhengzhou, 451191, PR China
| | - Shuai Zhang
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, PR China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| |
Collapse
|
2
|
Rivera-Núñez Z, Kinkade C, Brinker A, Zhang R, Buckley B, Brunner J, Ohman-Strickland P, Qiu X, Qasem RJ, Fallon JK, Smith PC, Miller RK, Salafia CS, O’Connor TG, Aleksunes LM, Barrett ES. Mycoestrogen Exposure during Pregnancy: Impact of the ABCG2 Q141K Variant on Birth and Placental Outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:57001. [PMID: 40126888 PMCID: PMC12052082 DOI: 10.1289/ehp14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Zearalenone (ZEN) is an estrogenic mycotoxin ("mycoestrogen") that contaminates global grain crops leading to detectable concentrations of ZEN and its metabolites, including the synthetic version α -zearalanol (also called zeranol; ZER), in human populations. Despite in vitro and in vivo animal evidence of endocrine disruption by ZEN, there has been limited investigation in humans. OBJECTIVES To examine markers of fetal growth following prenatal exposure to ZEN and evaluate the role of the placental efflux transporter BCRP/ABCG2 in protecting against ZEN's potential fetoplacental toxicity. METHODS Placentas were collected from participants (n = 271 ) in the Understanding Pregnancy Signals and Development cohort (Rochester, New York, USA). Placental ZEN and its metabolites were analyzed from tissue samples using HPLC-MS. Birth weights and placental weights were obtained from medical records and direct measurement, respectively; fetoplacental weight ratio (FPR) was calculated by dividing birth weight by placental weight. Covariate-adjusted generalized linear regression models were used to examine ZEN, ZER, and total mycoestrogens (sum of ZEN, ZER, and their metabolites) in relation to birth length, birth weight, placental weight and FPR. We additionally stratified models by infant sex and ABCG2 C421A (Q141K) genotype. RESULTS Mycoestrogens were detected in 84% of placentas (median ZEN: 0.010 ng / g ) and total mycoestrogens were associated with lower FPR [- 0.20 ; 95% confidence interval (CI): - 0.32 , - 0.08 ], particularly in female infants (- 0.31 ; 95% CI: - 0.52 , - 0.09 ). Associations with birth weight were inverse and overall nonsignificant. Among the 17% of participants with the reduced function 421A ABCG2 variant (AA or AC), total mycoestrogens were associated with lower birth weight (- 113.5 g ; 95% CI: - 226.5 , - 0.50 ), whereas in wild-type individuals, total mycoestrogens were associated with higher placental weight (9.9; 95% CI: 0.57, 19.2) and reduced FPR (- 0.19 ; 95% CI: - 0.33 , - 0.05 ). DISCUSSION Results from this epidemiological study of prenatal mycoestrogen exposure and perinatal health suggest that mycoestrogens may reduce placental efficiency, resulting in lower birth weight, particularly in female and ABCG2 421A infants. https://doi.org/10.1289/EHP14478.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Carolyn Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Ranran Zhang
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Psychiatry, University of Rochester, Rochester, New York, USA
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Rani J. Qasem
- Department of Applied Pharmaceutical Sciences, School of Pharmacy, Isra University, Amman, Jordan
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Richard K. Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Thomas G. O’Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Kinkade CW, Brinker A, Buckley B, Waysack O, Fernandez ID, Kautz A, Meng Y, Shi H, Brunner J, Ohman-Strickland P, Groth SW, O'Connor TG, Aleksunes LM, Barrett ES, Rivera-Núñez Z. Sociodemographic and dietary predictors of maternal and placental mycoestrogen concentrations in a US pregnancy cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:382-392. [PMID: 39363096 PMCID: PMC11968447 DOI: 10.1038/s41370-024-00722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Zearalenone (ZEN) is a mycotoxin contaminating grains and processed foods. ZEN alters nuclear estrogen receptor α/β signaling earning its designation as a mycoestrogen. Experimental evidence demonstrates that mycoestrogen exposure during pregnancy is associated with altered maternal sex steroid hormones, changes in placental size, and decreases in fetal weight and length. While mycoestrogens have been detected in human biospecimens worldwide, exposure assessment of ZEN in US populations, particularly during pregnancy, is lacking. OBJECTIVE To characterize urinary and placental concentrations of ZEN and its metabolites in healthy US pregnant people and examine demographic, perinatal, and dietary predictors of exposure. METHODS Urine samples were collected in each trimester from pregnant participants in the UPSIDE study and placenta samples were collected at delivery (Rochester, NY, n = 317). We used high performance liquid chromatography and high-resolution tandem mass spectrometry to measure total urinary (ng/ml) and placental mycoestrogens (ng/g). Using linear regression and linear mixed effect models, we examined associations between mycoestrogen concentrations and demographic, perinatal, and dietary factors (Healthy Eating Index [HEI], ultra-processed food [UPF] consumption). RESULTS Mycoestrogens were detected in 97% of urines (median 0.323 ng/ml) and 84% of placentas (median 0.012 ng/g). Stability of urinary mycoestrogens across pregnancy was low (ICC: 0.16-0.22) and did not correlate with placental levels. In adjusted models, parity (multiparous) and pre-pregnancy BMI (higher) predicted higher urinary concentrations. Birth season (fall) corresponded with higher placental mycoestrogens. Dietary analyses indicated that higher HEI (healthier diets) predicted lower exposure (e.g., Σmycoestrogens %∆ -2.03; 95%CI -3.23, -0.81) and higher percent calories from UPF predicted higher exposure (e.g., Σmycoestrogens %∆ 1.26; 95%CI 0.29, 2.24). IMPACT The mycotoxin, zearalenone (ZEN), has been linked to adverse health and reproductive impacts in animal models and livestock. Despite evidence of widespread human exposure, relatively little is known about predictors of exposure. In a pregnant population, we observed that maternal ZEN concentrations varied by maternal pre-pregnancy BMI and parity. Consumption of ultra-processed foods, added sugars, and refined grains were linked to higher ZEN concentrations while healthier diets were associated with lower levels. Our research suggests disparities in exposure that are likely due to diet. Further research is needed to understand the impacts of ZEN on maternal and offspring health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Olivia Waysack
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - I Diana Fernandez
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Amber Kautz
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Ying Meng
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Huishan Shi
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Susan W Groth
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Psychiatry, University of Rochester, Rochester, NY, USA
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
4
|
Kinkade CW, Rivera-Núñez Z, Brinker A, Buckley B, Waysack O, Kautz A, Meng Y, Ohman Strickland P, Block R, Groth SW, O'Connor TG, Aleksunes LM, Barrett ES. Urinary mycoestrogens and gestational weight gain in the UPSIDE pregnancy cohort. Environ Health 2024; 23:103. [PMID: 39567992 PMCID: PMC11580541 DOI: 10.1186/s12940-024-01141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Zearalenone (ZEN), a secondary metabolite of Fusarium fungi, is one of the most common mycotoxins in global food supplies such as cereal grains and processed food. ZEN and its metabolites are commonly referred to as mycoestrogens, due to their ability to directly bind nuclear estrogen receptors α (ER-α) and β (ER-β). Zeranol, a synthetic mycoestrogen, is administered to U.S. cattle as a growth promoter. Despite widespread human exposure and ample evidence of adverse reproductive impacts in vitro and in vivo, there has been little epidemiological research on the health impacts of ZEN exposure during pregnancy. The objective of our study was to examine associations between ZEN and gestational weight gain (GWG). METHODS Urine samples were collected in each trimester from pregnant participants in the UPSIDE cohort (n = 286, Rochester, NY, USA). High performance liquid chromatography and high-resolution tandem mass spectrometry were used to quantify concentrations of ZEN as well as ∑mycoestrogens (composite sum of ZEN metabolites; ng/ml). Maternal weights at clinical visits were abstracted from medical records. We fitted longitudinal models of specific-gravity adjusted, log-transformed ZEN and ∑mycoestrogens in relation to total GWG (kilograms) and GWG rate (kilograms/week). We additionally examined risk of excessive GWG (in relation to Institute of Medicine guidelines) and considered effect modification by fetal sex. RESULTS ZEN and ∑mycoestrogens were detected in > 93% and > 95% of samples, respectively. Mycoestrogen concentrations were positively associated with total GWG (ZEN β:0.50 kg; 95%CI: 0.13, 0.87) and GWG rate (ZEN β:0.20 kg/week; 95%CI: 0.01, 0.03). Associations tended to be stronger among participants carrying male (versus female) fetuses and results were robust to adjustment for diet. CONCLUSIONS Mycoestrogen exposure during pregnancy may contribute to greater GWG. Future research is needed to understand potential influences on downstream maternal and offspring health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road Piscataway, 08854, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road Piscataway, 08854, Piscataway, NJ, USA
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road Piscataway, 08854, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road Piscataway, 08854, Piscataway, NJ, USA
| | - Olivia Waysack
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Amber Kautz
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Ying Meng
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Pamela Ohman Strickland
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Robert Block
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Cardiology, University of Rochester Medical Center, Rochester, NY, USA
- Center for Community Health and Prevention, University of Rochester Medical Center, Rochester, NY, USA
| | - Susan W Groth
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Departments of Psychiatry and Neuroscience, University of Rochester, Rochester, NY, USA
- The Wynne Family Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road Piscataway, 08854, Piscataway, NJ, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road Piscataway, 08854, Piscataway, NJ, USA.
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA.
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Kinkade CW, Aleksunes LM, Brinker A, Buckley B, Brunner J, Wang C, Miller RK, O'Connor TG, Rivera-Núñez Z, Barrett ES. Associations between mycoestrogen exposure and sex steroid hormone concentrations in maternal serum and cord blood in the UPSIDE pregnancy cohort. Int J Hyg Environ Health 2024; 260:114405. [PMID: 38878407 PMCID: PMC11441442 DOI: 10.1016/j.ijheh.2024.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Zearalenone (ZEN) is a fungal-derived toxin found in global food supplies including cereal grains and processed foods, impacting populations worldwide through diet. Because the chemical structure of ZEN and metabolites closely resembles 17β-estradiol (E2), they interact with estrogen receptors α/β earning their designation as 'mycoestrogens'. In animal models, gestational exposure to mycoestrogens disrupts estrogen activity and impairs fetal growth. Here, our objective was to evaluate relationships between mycoestrogen exposure and sex steroid hormone concentrations in maternal circulation and cord blood for the first time in humans. In each trimester, pregnant participants in the UPSIDE study (n = 297) provided urine for mycoestrogen analysis and serum for hormone analysis. At birth, placental mycoestrogens and cord steroids were measured. We fitted longitudinal models examining log-transformed mycoestrogen concentrations in relation to log-transformed hormones, adjusting for covariates. Secondarily, multivariable linear models examined associations at each time point (1st, 2nd, 3rd trimesters, delivery). We additionally considered effect modification by fetal sex. ZEN and its metabolite, α-zearalenol (α-ZOL), were detected in >93% and >75% of urine samples; >80% of placentas had detectable mycoestrogens. Longitudinal models from the full cohort exhibited few significant associations. In sex-stratified analyses, in pregnancies with male fetuses, estrone (E1) and free testosterone (fT) were inversely associated with ZEN (E1 %Δ: -6.68 95%CI: -12.34, -0.65; fT %Δ: -3.22 95%CI: -5.68, -0.70); while α-ZOL was positively associated with E2 (%Δ: 5.61 95%CI: -1.54, 9.85) in pregnancies with female fetuses. In analysis with cord hormones, urinary mycoestrogens were inversely associated with androstenedione (%Δ: 9.15 95%CI: 14.64, -3.30) in both sexes, and placental mycoestrogens were positively associated with cord fT (%Δ: 37.13, 95%CI: 4.86, 79.34) amongst male offspring. Findings support the hypothesis that mycoestrogens act as endocrine disruptors in humans, as in animal models and livestock. Additional work is needed to understand impacts on maternal and child health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor - UCLA Medical Center, Torrance, CA, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, Pediatrics and Pathology, University of Rochester, New York, NY, 14642, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Psychiatry, University of Rochester, NY, USA; Wynne Center for Family Research, University of Rochester, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
6
|
Ivanova B. Special Issue with Research Topics on "Recent Analysis and Applications of Mass Spectra on Biochemistry". Int J Mol Sci 2024; 25:1995. [PMID: 38396673 PMCID: PMC10888122 DOI: 10.3390/ijms25041995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Analytical mass spectrometry applies irreplaceable mass spectrometric (MS) methods to analytical chemistry and chemical analysis, among other areas of analytical science [...].
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| |
Collapse
|
7
|
Chernonosov AA, Mednova IA, Levchuk LA, Mazurenko EO, Roschina OV, Simutkin GG, Bokhan NA, Koval VV, Ivanova SA. Untargeted Plasma Metabolomic Profiling in Patients with Depressive Disorders: A Preliminary Study. Metabolites 2024; 14:110. [PMID: 38393002 PMCID: PMC10890195 DOI: 10.3390/metabo14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Depressive disorder is a multifactorial disease that is based on dysfunctions in mental and biological processes. The search for biomarkers can improve its diagnosis, personalize therapy, and lead to a deep understanding of the biochemical processes underlying depression. The purpose of this work was a metabolomic analysis of blood serum to classify patients with depressive disorders and healthy individuals using Compound Discoverer software. Using high-resolution mass spectrometry, blood plasma samples from 60 people were analyzed, of which 30 were included in a comparison group (healthy donors), and 30 were patients with a depressive episode (F32.11) and recurrent depressive disorder (F33.11). Differences between patient and control groups were identified using the built-in utilities in Compound Discoverer software. Compounds were identified by their accurate mass and fragment patterns using the mzCloud database and tentatively identified by their exact mass using the ChemSpider search engine and the KEGG, ChEBI, FDA UNII-NLM, Human Metabolome and LipidMAPS databases. We identified 18 metabolites that could divide patients with depressive disorders from healthy donors. Of these, only two compounds were tentatively identified using the mzCloud database (betaine and piperine) based on their fragmentation spectra. For three compounds ((4S,5S,8S,10R)-4,5,8-trihydroxy-10-methyl-3,4,5,8,9,10-hexahydro-2H-oxecin-2-one, (2E,4E)-N-(2-hydroxy-2-methylpropyl)-2,4-tetradecadienamide and 17α-methyl-androstan-3-hydroxyimine-17β-ol), matches were found in the mzCloud database but with low score, which could not serve as reliable evidence of their structure. Another 13 compounds were identified by their exact mass in the ChemSpider database, 9 (g-butyrobetaine, 6-diazonio-5-oxo-L-norleucine, 11-aminoundecanoic acid, methyl N-acetyl-2-diazonionorleucinate, glycyl-glycyl-argininal, dilaurylmethylamine, 12-ketodeoxycholic acid, dicetylamine, 1-linoleoyl-2-hydroxy-sn-glycero-3-PC) had only molecular formulas proposed, and 4 were unidentified. Thus, the use of Compound Discoverer software alone was not sufficient to identify all revealed metabolites. Nevertheless, the combination of the found metabolites made it possible to divide patients with depressive disorders from healthy donors.
Collapse
Affiliation(s)
- Alexander A Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Irina A Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Lyudmila A Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Ekaterina O Mazurenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Olga V Roschina
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - German G Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, Tomsk 634014, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| |
Collapse
|
8
|
Lazofsky A, Brinker A, Gupta R, Barrett E, Aleksunes LM, Rivera-Núñez Z, Buckley B. Optimized extraction and analysis methods using liquid chromatography-tandem mass spectrometry for zearalenone and metabolites in human placental tissue. Heliyon 2023; 9:e16940. [PMID: 37484340 PMCID: PMC10361036 DOI: 10.1016/j.heliyon.2023.e16940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Zearalenone and its metabolites, a group of endocrine disrupting mycotoxins, have been linked to adverse reproductive health effects. They cross the placental barrier, potentially reaching the fetus. In this study, we adapted and optimized our protocol previously used for urine, to measure these mycotoxins in human placentas. We combined a supported liquid extraction step using Chem Elut cartridges with solid phase extraction on Discovery® DSC-NH2 tubes. The optimized extraction efficiencies were between 68 and 80% for all metabolites. Analysis was performed by UHPLC-HRMS using a Betasil™ Phenyl-Hexyl column eluted with a gradient of acetonitrile-methanol-water. The chromatography method separated all analytes in under 15 min. Validation experiments confirmed the method's sensitivity, with LODs ranging from 0.0055 to 0.011 pg/mg tissue. The method was linear over a range of 0.0025-1.5 pg/mg tissue with R2 values ≥ 0.994. Precision and accuracy calculations ranged from 4.7-7.9% and 0.6-6.7% respectively. The method was then successfully applied to a subset of placenta samples (n = 25) collected from an ongoing prospective birth cohort. Interestingly, 92% of the samples contained at least one measurable zearalenone metabolite, providing initial indication of potentially widespread exposure during pregnancy.
Collapse
Affiliation(s)
- Abigail Lazofsky
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Ruby Gupta
- Department of Environmental and Occupational Health and Justice, Rutgers School of Public Health, Rutgers University, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Emily Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers University, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, 160 Frelinghuysen Road, Rutgers University, Piscataway, NJ, 08854, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, 61 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers University, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|