1
|
Wang J, Luo J, Liu H, Xu D, Li Y, Liu X, Zeng H. "Blue-red-purple" multicolored lateral flow immunoassay for simultaneous detection of GM crops utilizing RPA and CRISPR/Cas12a. Talanta 2025; 282:127010. [PMID: 39395308 DOI: 10.1016/j.talanta.2024.127010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Advanced multiplexed testing techniques should be designed and developed to ensure an accurate and reliable evaluation for unknown samples. In this study, an efficient platform coupled with the "Blue-Red-Purple" strategy based on recombinant polymerase amplification (RPA), CRISPR/Cas12a and lateral flow strip was established, which could realize the dual-target detection of CP4-EPSPS and Cry1Ab/Ac in genetically modified crops. The lateral flow immunoassay was developed using different colored microspheres to label the antibodies to realize the visualization of results and avoid cross-reactions. The proposed method exhibits high specificity, sensitivity and stability. The visual detection limits of standard plasmids and real samples reached 10 copies/μL and 0.5 %, respectively, which could be stored at 4 °C for 12 months with high detection ability. Moreover, the entire detection process could be completed within 50 min without any complex instruments or professional operators. These findings indicated that a sensitive, specific, rapid and accurate method was established for on-site detection of GM crops.
Collapse
Affiliation(s)
- Jinbin Wang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China; Crops Ecological Environment Security Inspection and Supervision Center, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Jiawei Luo
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hua Liu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China; Crops Ecological Environment Security Inspection and Supervision Center, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Danhong Xu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - You Li
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Haijuan Zeng
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China; Crops Ecological Environment Security Inspection and Supervision Center, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China; Shanghai Co-Elite Agricultural Sci-Tech (Group) Co. Ltd., Shanghai, 201106, China.
| |
Collapse
|
2
|
Abstract
INTRODUCTION Recombinase polymerase amplification (RPA) is a promising and emerging technology for rapidly amplifying target nucleic acid from minimally processed samples and through small portable instruments. RPA is suitable for point-of-care testing (POCT) and on-site field testing, and it is compatible with microfluidic devices. Several detection assays have been developed, but limited research has dug deeper into the chemistry of RPA to understand its kinetics and fix its shortcomings. AREAS COVERED This review provides a detailed introduction of RPA molecular mechanism, kits formats, optimization, application, pros, and cons. Moreover, this critical review discusses the nonspecificity issue of RPA, highlights its consequences, and emphasizes the need for more research to resolve it. This review discusses the reaction kinetics of RPA in relation to target length, product quantity, and sensitivity. This critical review also questions the novelty of recombinase-aided amplification (RAA). In short, this review discusses many aspects of RPA technology that have not been discussed previously and provides a deeper insight and new perspectives of the technology. EXPERT OPINION RPA is an excellent choice for pathogen detection, especially in low-resource settings. It has a potential to replace PCR for all purposes, provided its shortcomings are fixed and its reagent accessibility is improved.
Collapse
Affiliation(s)
- Mustafa Ahmad Munawar
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Li J, Zhang L, Li L, Li X, Zhang X, Zhai S, Gao H, Li Y, Wu G, Wu Y. Development of Genomic DNA Certified Reference Materials for Genetically Modified Rice Kefeng 6. ACS OMEGA 2020; 5:21602-21609. [PMID: 32905288 PMCID: PMC7469412 DOI: 10.1021/acsomega.0c02274] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
The application of certified reference materials (CRMs) to genetically modified organism (GMO) detection is essential for guaranteeing the accuracy, comparability, and traceability of quantitative results over time and among laboratories. Clean leaves from GM rice Kefeng 6 were used as raw materials to develop a batch of genomic DNA (gDNA) CRMs. The optimized KF6/PLD duplex digital PCR was used for collaborative characterization of Kefeng 6 gDNA CRMs by eight qualified laboratories; this batch of gDNA CRMs was certified for two property values, namely, copy number ratio and copy number concentration, which were 1.03 ± 0.04 and (1.60 ± 0.11) × 105 copies/μL, respectively. The gDNA CRMs displayed good between-vial homogeneity when the minimum sample intake of 2 μL was taken into account. Stability studies indicated that the gDNA CRMs should be transported below 25 °C, and cold chain transport was recommended. Shelf life was assessed to be at least 12 months, and when using gDNA CRMs, freeze-thaw should not exceed 10 cycles. Compared to the available gDNA CRMs in the market, this batch of gDNA CRMs has accurate property values with combined uncertainties, providing user-friendly calibrators for GM rice Kefeng 6 inspection and monitoring. The development and characterization of Kefeng 6 gDNA CRMs contribute to the establishment of a copy number-based reference system for GMO detection.
Collapse
Affiliation(s)
- Jun Li
- Key
Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil
Crops Research Institute, Chinese Academy
of Agricultural Sciences, Wuhan 430062, China
| | - Li Zhang
- School
of Life Science, South-Central University
for Nationalities, Wuhan 430074, China
| | - Liang Li
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Xiaying Li
- Development
Center of Science and Technology, Ministry
of Agriculture and Rural Affairs P. R. China, Beijing 100025, China
| | - Xiujie Zhang
- Development
Center of Science and Technology, Ministry
of Agriculture and Rural Affairs P. R. China, Beijing 100025, China
| | - Shanshan Zhai
- Key
Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil
Crops Research Institute, Chinese Academy
of Agricultural Sciences, Wuhan 430062, China
| | - Hongfei Gao
- Key
Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil
Crops Research Institute, Chinese Academy
of Agricultural Sciences, Wuhan 430062, China
| | - Yunjing Li
- Key
Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil
Crops Research Institute, Chinese Academy
of Agricultural Sciences, Wuhan 430062, China
| | - Gang Wu
- Key
Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil
Crops Research Institute, Chinese Academy
of Agricultural Sciences, Wuhan 430062, China
| | - Yuhua Wu
- Key
Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil
Crops Research Institute, Chinese Academy
of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
4
|
Li J, Li L, Zhang L, Zhang X, Li X, Zhai S, Gao H, Li Y, Wu G, Wu Y. Development of a certified genomic DNA reference material for detection and quantification of genetically modified rice KMD. Anal Bioanal Chem 2020; 412:7007-7016. [PMID: 32740822 DOI: 10.1007/s00216-020-02834-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Qualitative and quantitative detection of genetically modified products is inseparable from the application of reference materials (RMs). In this study, a batch of genomic DNA (gDNA) certified reference materials (CRMs) was developed using genetically modified rice Kemingdao (KMD) homozygotes as the raw material. The gDNA CRMs in this batch showed good homogeneity; the minimum sample intake was determined to be 2 μL. The stability study showed that transportation by cold chain is preferable, no significant degradation trend was observed during a 12-month period when storing the gDNA CRMs at 4 °C and - 20 °C, and the number of freeze-thaw cycles cannot exceed 10. The property values of the copy number ratio of transgene and endogenous gene and the copy number concentration for gDNA CRMs were determined by a collaborative characterization of eight laboratories using the duplex KMD/PLD droplet digital PCR (ddPCR) assays. The uncertainty components of characterization, potential between-unit heterogeneity, and potential degradation during long-term storage were combined to estimate the expanded uncertainty of the certified value with a coverage factor k of 2.0. The certified value of copy number ratio for KMD gDNA CRM is 0.99 ± 0.05, and that of copy number concentration is (1.76 ± 0.10) × 105 copies/μL. Compared to the gDNA CRMs in availability, this batch of KMD gDNA CRMs is assigned accurate property values and can be directly used for qualitative and quantitative detection of GMOs as well as evaluation of the parameters of analytical methods with no need of further DNA concentration measurement. Graphical abstract.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Zhang
- School of Life Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Xiujie Zhang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs P. R. China, Beijing, 100025, China.
| | - Xiaying Li
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs P. R. China, Beijing, 100025, China
| | - Shanshan Zhai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Hongfei Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Yunjing Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.
| | - Yuhua Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.
| |
Collapse
|
5
|
Kim JH, Park SB, Roh HJ, Shin MK, Moon GI, Hong JH, Kim HY. Event-specific qualitative and quantitative detection of five genetically modified rice events using a single standard reference molecule. Food Chem 2017; 226:187-192. [PMID: 28254011 DOI: 10.1016/j.foodchem.2017.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 01/03/2017] [Accepted: 01/13/2017] [Indexed: 11/17/2022]
Abstract
One novel standard reference plasmid, namely pUC-RICE5, was constructed as a positive control and calibrator for event-specific qualitative and quantitative detection of genetically modified (GM) rice (Bt63, Kemingdao1, Kefeng6, Kefeng8, and LLRice62). pUC-RICE5 contained fragments of a rice-specific endogenous reference gene (sucrose phosphate synthase) as well as the five GM rice events. An existing qualitative PCR assay approach was modified using pUC-RICE5 to create a quantitative method with limits of detection correlating to approximately 1-10 copies of rice haploid genomes. In this quantitative PCR assay, the square regression coefficients ranged from 0.993 to 1.000. The standard deviation and relative standard deviation values for repeatability ranged from 0.02 to 0.22 and 0.10% to 0.67%, respectively. The Ministry of Food and Drug Safety (Korea) validated the method and the results suggest it could be used routinely to identify five GM rice events.
Collapse
Affiliation(s)
- Jae-Hwan Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Saet-Byul Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyo-Jeong Roh
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min-Ki Shin
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Gui-Im Moon
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Jin-Hwan Hong
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Hae-Yeong Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
6
|
Fraiture MA, Roosens NH, Taverniers I, De Loose M, Deforce D, Herman P. Biotech rice: Current developments and future detection challenges in food and feed chain. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Fraiture MA, Herman P, Taverniers I, De Loose M, Deforce D, Roosens NH. Current and new approaches in GMO detection: challenges and solutions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:392872. [PMID: 26550567 PMCID: PMC4624882 DOI: 10.1155/2015/392872] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/07/2015] [Indexed: 11/17/2022]
Abstract
In many countries, genetically modified organisms (GMO) legislations have been established in order to guarantee the traceability of food/feed products on the market and to protect the consumer freedom of choice. Therefore, several GMO detection strategies, mainly based on DNA, have been developed to implement these legislations. Due to its numerous advantages, the quantitative PCR (qPCR) is the method of choice for the enforcement laboratories in GMO routine analysis. However, given the increasing number and diversity of GMO developed and put on the market around the world, some technical hurdles could be encountered with the qPCR technology, mainly owing to its inherent properties. To address these challenges, alternative GMO detection methods have been developed, allowing faster detections of single GM target (e.g., loop-mediated isothermal amplification), simultaneous detections of multiple GM targets (e.g., PCR capillary gel electrophoresis, microarray, and Luminex), more accurate quantification of GM targets (e.g., digital PCR), or characterization of partially known (e.g., DNA walking and Next Generation Sequencing (NGS)) or unknown (e.g., NGS) GMO. The benefits and drawbacks of these methods are discussed in this review.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Technology and Food Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Burg. Van Gansberghelaan 115, Bus 1, 9820 Merelbeke, Belgium
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Philippe Herman
- Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Isabel Taverniers
- Technology and Food Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Burg. Van Gansberghelaan 115, Bus 1, 9820 Merelbeke, Belgium
| | - Marc De Loose
- Technology and Food Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Burg. Van Gansberghelaan 115, Bus 1, 9820 Merelbeke, Belgium
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Nancy H. Roosens
- Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| |
Collapse
|
8
|
Xu C, Li L, Jin W, Wan Y. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops. Int J Mol Sci 2014; 15:18197-205. [PMID: 25310647 PMCID: PMC4227211 DOI: 10.3390/ijms151018197] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/20/2014] [Accepted: 09/29/2014] [Indexed: 01/23/2023] Open
Abstract
Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37–42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15–25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.
Collapse
Affiliation(s)
- Chao Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yusong Wan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Nakamura K, Akiyama H, Kawano N, Kobayashi T, Yoshimatsu K, Mano J, Kitta K, Ohmori K, Noguchi A, Kondo K, Teshima R. Evaluation of real-time PCR detection methods for detecting rice products contaminated by rice genetically modified with a CpTI–KDEL–T-nos transgenic construct. Food Chem 2013; 141:2618-24. [DOI: 10.1016/j.foodchem.2013.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
|
10
|
Fraiture MA, Herman P, Taverniers I, De Loose M, Deforce D, Roosens NH. An innovative and integrated approach based on DNA walking to identify unauthorised GMOs. Food Chem 2013; 147:60-9. [PMID: 24206686 DOI: 10.1016/j.foodchem.2013.09.112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/12/2013] [Accepted: 09/19/2013] [Indexed: 01/23/2023]
Abstract
In the coming years, the frequency of unauthorised genetically modified organisms (GMOs) being present in the European food and feed chain will increase significantly. Therefore, we have developed a strategy to identify unauthorised GMOs containing a pCAMBIA family vector, frequently present in transgenic plants. This integrated approach is performed in two successive steps on Bt rice grains. First, the potential presence of unauthorised GMOs is assessed by the qPCR SYBR®Green technology targeting the terminator 35S pCAMBIA element. Second, its presence is confirmed via the characterisation of the junction between the transgenic cassette and the rice genome. To this end, a DNA walking strategy is applied using a first reverse primer followed by two semi-nested PCR rounds using primers that are each time nested to the previous reverse primer. This approach allows to rapidly identify the transgene flanking region and can easily be implemented by the enforcement laboratories.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium; Scientific Institute of Public Health (WIV-ISP), Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium; Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences Unit, Burg. Van Gansberghelaan 115, bus 1, 9820 Merelbeke, Belgium; University of Gent (UGent), Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
11
|
Rapid real-time PCR detection of transgenic cry1C rice using plasmid molecule as calibrator. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-1957-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Li Q, Fang J, Liu X, Xi X, Li M, Gong Y, Zhang M. Loop-mediated isothermal amplification (LAMP) method for rapid detection of cry1Ab gene in transgenic rice (Oryza sativa L.). Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-1911-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Chen X, Wang X, Jin N, Zhou Y, Huang S, Miao Q, Zhu Q, Xu J. Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification. Int J Mol Sci 2012. [PMID: 23203072 PMCID: PMC3509588 DOI: 10.3390/ijms131114421] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genetically modified (GM) rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR), currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP) method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB]) within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%–0.005% GM), was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB) facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; E-Mails: (X.C.); (X.W.); (Y.Z.); (S.H.); (Q.M.); (Q.Z.)
| | - Xiaofu Wang
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; E-Mails: (X.C.); (X.W.); (Y.Z.); (S.H.); (Q.M.); (Q.Z.)
| | - Nuo Jin
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; E-Mail:
| | - Yu Zhou
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; E-Mails: (X.C.); (X.W.); (Y.Z.); (S.H.); (Q.M.); (Q.Z.)
| | - Sainan Huang
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; E-Mails: (X.C.); (X.W.); (Y.Z.); (S.H.); (Q.M.); (Q.Z.)
- College of Chemistry and Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Qingmei Miao
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; E-Mails: (X.C.); (X.W.); (Y.Z.); (S.H.); (Q.M.); (Q.Z.)
| | - Qing Zhu
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; E-Mails: (X.C.); (X.W.); (Y.Z.); (S.H.); (Q.M.); (Q.Z.)
| | - Junfeng Xu
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; E-Mails: (X.C.); (X.W.); (Y.Z.); (S.H.); (Q.M.); (Q.Z.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-571-8641-5202; Fax: +86-571-8640-1834
| |
Collapse
|
14
|
Combinatory SYBR® Green Real-Time PCR Screening Approach for Tracing Materials Derived from Genetically Modified Rice. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9493-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Shin KS, Lim MH, Woo HJ, Lim SH, Ahn HI, Lee JH, Cho HS, Kweon SJ, Suh SC. Event-specific qualitative and quantitative polymerase chain reaction methods for detection of insect-resistant genetically modified Chinese cabbage based on the 3′-junction of the insertion site. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-2028-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Chen K, Han H, Luo Z, Wang Y, Wang X. A practicable detection system for genetically modified rice by SERS-barcoded nanosensors. Biosens Bioelectron 2012; 34:118-24. [DOI: 10.1016/j.bios.2012.01.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/31/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
|
17
|
Guertler P, Huber I, Pecoraro S, Busch U. Development of an event-specific detection method for genetically modified rice Kefeng 6 by quantitative real-time PCR. J Verbrauch Lebensm 2011. [DOI: 10.1007/s00003-011-0748-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|