1
|
Uzkuç H, Karagül Yüceer Y. Effect of heat treatment, plant coagulant, and starter culture on sensory characteristics and volatile compounds of goat cheese. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
2
|
Wagashi cheese: Probiotic bacteria incorporation and significance on microbiological, physicochemical, functional and sensory properties during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Mefleh M, Pasqualone A, Caponio F, Faccia M. Legumes as basic ingredients in the production of dairy-free cheese alternatives: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:8-18. [PMID: 34453343 PMCID: PMC9293078 DOI: 10.1002/jsfa.11502] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 05/27/2023]
Abstract
Research into dairy-free alternative products, whether plant-based or cell-based, is growing fast and the food industry is facing a new challenge of creating innovative, nutritious, accessible, and natural dairy-free cheese alternatives. The market demand for these products is continuing to increase owing to more people choosing to reduce or eliminate meat and dairy products from their diet for health, environmental sustainability, and/or ethical reasons. This review investigates the current status of dairy product alternatives. Legume proteins have good technological properties and are cheap, which gives them a strong commercial potential to be used in plant-based cheese-like products. However, few legume proteins have been explored in the formulation, development, and manufacture of a fully dairy-free cheese because of their undesirable properties: heat stable anti-nutritional factors and a beany flavor. These can be alleviated by novel or traditional and economical techniques. The improvement and diversification of the formulation of legume-based cheese alternatives is strongly suggested as a low-cost step towards more sustainable food chains. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Marina Mefleh
- Department of Soil, Plant and Food Science (DISSPA)University of Bari Aldo MoroBariItaly
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA)University of Bari Aldo MoroBariItaly
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA)University of Bari Aldo MoroBariItaly
| | - Michele Faccia
- Department of Soil, Plant and Food Science (DISSPA)University of Bari Aldo MoroBariItaly
| |
Collapse
|
4
|
Faccia M, Natrella G, Gambacorta G, Trani A. Cheese ripening in nonconventional conditions: A multiparameter study applied to Protected Geographical Indication Canestrato di Moliterno cheese. J Dairy Sci 2021; 105:140-153. [PMID: 34756439 DOI: 10.3168/jds.2021-20845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022]
Abstract
A multiparameter study was performed to evaluate the effect of fondaco, a traditional ripening cellar without any artificial temperature and relative humidity control, on the chemical, microbiological, and sensory characteristics of Protected Geographical Indication Canestrato di Moliterno cheese. Ripening in such a nonconventional environment was associated with lower counts of lactococci, lactobacilli, and total viable bacteria, and higher presence of enterococci, in comparison with ripening in a controlled maturation room. Moreover, fondaco cheese underwent accelerated maturation, as demonstrated by faster casein degradation, greater accumulation of free AA, and higher formation of volatile organic compounds. Secondary proteolysis, as assessed by liquid chromatography-mass spectrometry of free AA and low molecular weight peptides, did not show any qualitative difference among cheeses, but fondaco samples evidenced an advanced level of peptidolysis. On the other hand, significant qualitative differences were observed in the free fatty acid profiles and in the sensory characteristics. Principal component analysis showed a clear separation of the fondaco and control cheeses, indicating that ripening in the natural room conferred unique sensory features to the product.
Collapse
Affiliation(s)
- Michele Faccia
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126 Bari, Italy.
| | - Giuseppe Natrella
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Antonio Trani
- CIHEAM International Center for Advanced Mediterranean Agronomic Studies, Via Ceglie, 9, 70010 Valenzano, Bari, Italy
| |
Collapse
|
5
|
Aider M. Potential applications of ficin in the production of traditional cheeses and protein hydrolysates. JDS COMMUNICATIONS 2021; 2:233-237. [PMID: 36338378 PMCID: PMC9623659 DOI: 10.3168/jdsc.2020-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/21/2021] [Indexed: 06/16/2023]
Abstract
Using proteolytic enzymes extracted from plant materials is a promising way to ensure the sustainability of the food industry. This is particularly true for the dairy industry, especially in cheesemaking and the production of different milk protein hydrolysates for special food applications, particularly nutrition for infants, older adults, and people with food allergies. Ficin, a cysteyl protease isolated from the latex of the fig tree (Ficus carica), is characterized by strong enzymatic activity and can be used for milk clotting and protein hydrolysis for application in different foods. In particular, it can be used for milk protein hydrolysis to produce ingredients with reduced or eliminated allergenicity and improved bioavailability. Ficin can also be used as an active and effective replacement for calf rennet in cheesemaking, such as in traditional Cacioricotta and Teleme cheeses. It can also be used to produce protein hydrolysates with low or no allergenicity for application in infant formula and geriatric nutrition. This work provides an overview of ficin, a plant-derived protease, with an emphasis on its potential application in the production of some traditional cheeses and milk protein hydrolysates for special food applications.
Collapse
Affiliation(s)
- Mohammed Aider
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Québec, QC, G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
6
|
Hachana Y, Aloui O, Fortina R. Use of caprifig tree extract as a substitute for calf rennet in goat’s fresh cheese production. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Koroleva VA, Olshannikova SS, Holyavka MG, Artyukhov VG. Thermal Inactivation of Cysteine Proteases: The Key Stages. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Siar EH, Morellon-Sterling R, Zidoune MN, Fernandez-Lafuente R. Use of glyoxyl-agarose immobilized ficin extract in milk coagulation: Unexpected importance of the ficin loading on the biocatalysts. Int J Biol Macromol 2020; 144:419-426. [DOI: 10.1016/j.ijbiomac.2019.12.140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/15/2019] [Indexed: 12/23/2022]
|
9
|
Dupas C, Métoyer B, El Hatmi H, Adt I, Mahgoub SA, Dumas E. Plants: A natural solution to enhance raw milk cheese preservation? Food Res Int 2019; 130:108883. [PMID: 32156345 DOI: 10.1016/j.foodres.2019.108883] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 01/18/2023]
Abstract
Plants have been traditionnally used for centuries in cheese manufacturing, either for their aromatic properties or as technological auxiliaries (e.g. milk-clotting enzyme preparations, cheese wrappers). Some of these plants are known to have antimicrobial and/or antioxidant properties and could also act as natural preservatives for raw milk and derived dairy products. This review examined the traditional uses of plants in dairy processing, and then focuses on known antimicrobial and antioxidant properties of their extracts (e.g. maceration, decoction, essential oil). Known effects of theses plants on technological flora (starter cultures and microorganisms implicated in cheese ripening) were also summarized, and the potential for plant extracts used in combination with hurdle technologies was explored. Then, legal restriction and bioactivity variations from a culture media to a food matrix was reviewed: non-toxic bioactive molecules found in plants, extract preparation modes suitable with foodgrade processing restrictions, the role of the food matrix as a hindrance to the efficiency of bioactive compounds, and a review of food legislation. Finally, some commercial plant extracts for milk preservation were discussed.
Collapse
Affiliation(s)
- Coralie Dupas
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA - Equipe Mixte d'Accueil n°3733, rue Henri de Boissieu, F-01000 Bourg en Bresse, France.
| | - Benjamin Métoyer
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA - Equipe Mixte d'Accueil n°3733, rue Henri de Boissieu, F-01000 Bourg en Bresse, France.
| | - Halima El Hatmi
- Institut des Régions Arides (IRA), Km 22.5, route du Djorf, 4119 Medenine, Tunisia.
| | - Isabelle Adt
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA - Equipe Mixte d'Accueil n°3733, rue Henri de Boissieu, F-01000 Bourg en Bresse, France.
| | - Samir A Mahgoub
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511, Egypt.
| | - Emilie Dumas
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA - Equipe Mixte d'Accueil n°3733, rue Henri de Boissieu, F-01000 Bourg en Bresse, France.
| |
Collapse
|
10
|
An Evaluation of the Clotting Properties of Three Plant Rennets in the Milks of Different Animal Species. Foods 2019; 8:foods8120600. [PMID: 31757096 PMCID: PMC6963866 DOI: 10.3390/foods8120600] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 11/17/2022] Open
Abstract
Cynara cardunculus, Carica papaya and Ficus carica extracts are proposed as milk coagulants herein. Their coagulation efficiency was measured in bovine, buffalo, goat and sheep milk incubated at different temperatures. The milk-clotting and proteolytic activities as well as the lactodynamographic parameters were determined considering animal rennet as a reference coagulant. The vegetable coagulant, extracted from C. cardunculus pistils, proved to be the most suitable milk-clotting enzyme for cheesemaking, since it possesses similar milk clotting properties to conventional calf rennet. F. carica latex, but seemed to be a promising alternative coagulant at higher temperatures. The strong proteolytic activity of papain caused poor milk coagulation in all milk samples. To conclude, this result also supports the original hypothesis of this study that the excessive proteolytic nature of plant coagulants can negatively affect the cheesemaking process. The optimization of using a plant rennet in a dairy application can be done by selecting the appropriate plant rennet with a consistent clotting efficiency. These innovative manufacturing processes may also lead to the optimization and production of new cheese varieties.
Collapse
|
11
|
Antioxidant peptides (<3 kDa) identified on hard cow milk cheese with rennet from different origin. Food Res Int 2019; 120:643-649. [DOI: 10.1016/j.foodres.2018.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
|
12
|
Afsharnezhad M, Shahangian SS, Sariri R. A novel milk-clotting cysteine protease from Ficus johannis: Purification and characterization. Int J Biol Macromol 2019; 121:173-182. [DOI: 10.1016/j.ijbiomac.2018.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
|
13
|
Solid phase chemical modification of agarose glyoxyl-ficin: Improving activity and stability properties by amination and modification with glutaraldehyde. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Immobilization/Stabilization of Ficin Extract on Glutaraldehyde-Activated Agarose Beads. Variables That Control the Final Stability and Activity in Protein Hydrolyses. Catalysts 2018. [DOI: 10.3390/catal8040149] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Siar EH, Zaak H, Kornecki JF, Zidoune MN, Barbosa O, Fernandez-Lafuente R. Stabilization of ficin extract by immobilization on glyoxyl agarose. Preliminary characterization of the biocatalyst performance in hydrolysis of proteins. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Ben Amira A, Besbes S, Attia H, Blecker C. Milk-clotting properties of plant rennets and their enzymatic, rheological, and sensory role in cheese making: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1289959] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amal Ben Amira
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Gembloux, Belgium
- National Engineering School of Sfax, Laboratory of Food Analysis, University of Sfax, Sfax, Tunisia
| | - Souhail Besbes
- National Engineering School of Sfax, Laboratory of Food Analysis, University of Sfax, Sfax, Tunisia
| | - Hamadi Attia
- National Engineering School of Sfax, Laboratory of Food Analysis, University of Sfax, Sfax, Tunisia
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Gembloux, Belgium
| |
Collapse
|
17
|
Miloradovic ZN, Macej OD, Kljajevic NV, Jovanovic ST, Vucic TR, Zdravkovic IR. The effect of heat treatment of caprine milk on the composition of cheese whey. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
|
19
|
Abd El-Salam MH. Application of proteomics to the areas of milk production, processing and quality control - A review. INT J DAIRY TECHNOL 2014. [DOI: 10.1111/1471-0307.12116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Shah MA, Mir SA, Paray MA. Plant proteases as milk-clotting enzymes in cheesemaking: a review. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13594-013-0144-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Hayaloglu A, Yasar K, Tolu C, Sahingil D. Characterizing volatile compounds and proteolysis in Gokceada artisanal goat cheese. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|