1
|
Valcarcel J, Vázquez JA, Varela UR, Reis RL, Novoa-Carballal R. Isolation and Characterization of Polysaccharides from the Ascidian Styela clava. Polymers (Basel) 2021; 14:polym14010016. [PMID: 35012039 PMCID: PMC8747265 DOI: 10.3390/polym14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Styela clava is an edible sea squirt farmed in Korea that has gradually invaded other seas, negatively impacting the ecology and economy of coastal areas. Extracts from S. clava have shown wide bioactivities, and ascidians have the unique capability among animals of biosynthesizing cellulose. Thus, S. clava is a relevant candidate for valorization. Herein, we aimed at surveying and characterizing polysaccharides in both tunic and flesh of this ascidian. To this end, we enzymatically hydrolyzed both tissues, recovering crystalline cellulose from the tunic with high aspect ratios, based on results from microscopy, X-ray diffraction, and infrared spectroscopy analyses. Alkaline hydroalcoholic precipitation was applied to isolate the polysaccharide fraction that was characterized by gel permeation chromatography (with light scattering detection) and NMR. These techniques allowed the identification of glycogen in the flesh with an estimated Mw of 7 MDa. Tunic polysaccharides consisted of two fractions of different Mw. Application of Diffusion-Ordered NMR allowed spectroscopically separating the low-molecular-weight fraction to analyze the major component of an estimated Mw of 40–66 kDa. We identified six different sugar residues, although its complexity prevented the determination of the complete structure and connectivities of the residues. The two more abundant residues were N-acetylated and possibly components of the glycosaminoglycan-like (GAG-like) family, showing the remaining similarities to sulfated galactans. Therefore, Styela clava appears as a source of nanocrystalline cellulose and GAG-like polysaccharides.
Collapse
Affiliation(s)
- Jesus Valcarcel
- Recycling and Valorisation of Waste Materials, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.A.V.); (U.R.V.)
- Correspondence: (J.V.); (R.N.-C.)
| | - José Antonio Vázquez
- Recycling and Valorisation of Waste Materials, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.A.V.); (U.R.V.)
| | - Uxía R. Varela
- Recycling and Valorisation of Waste Materials, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.A.V.); (U.R.V.)
| | - Rui L. Reis
- 3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, 4805-017 Guimaraes, Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Braga, Portugal
| | - Ramon Novoa-Carballal
- 3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, 4805-017 Guimaraes, Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Braga, Portugal
- Correspondence: (J.V.); (R.N.-C.)
| |
Collapse
|
2
|
Phylogenetic Analysis and Screening of Antimicrobial and Antiproliferative Activities of Culturable Bacteria Associated with the Ascidian Styela clava from the Yellow Sea, China. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7851251. [PMID: 31559313 PMCID: PMC6735190 DOI: 10.1155/2019/7851251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/04/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023]
Abstract
Over 1,000 compounds, including ecteinascidin-743 and didemnin B, have been isolated from ascidians, with most having bioactive properties such as antimicrobial, antitumor, and enzyme-inhibiting activities. In recent years, direct and indirect evidence has shown that some bioactive compounds isolated from ascidians are not produced by ascidians themselves but by their symbiotic microorganisms. Isolated culturable bacteria associated with ascidians and investigating their potential bioactivity are an important approach for discovering novel compounds. In this study, a total of 269 bacteria were isolated from the ascidian Styela clava collected from the coast of Weihai in the north of the Yellow Sea, China. Phylogenetic relationships among 183 isolates were determined using their 16S rRNA gene sequences. Isolates were tested for antimicrobial activity against seven indicator strains, and an antiproliferative activity assay was performed to test for inhibition of human hepatocellular carcinoma Bel 7402 and human cervical carcinoma HeLa cell proliferation. Our results showed that the isolates belonged to 26 genera from 18 families in four phyla (Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes). Bacillus and Streptomyces were the most dominant genera; 146 strains had potent antimicrobial activities and inhibited at least one of the indicator strains. Crude extracts from 29 strains showed antiproliferative activity against Bel 7402 cells with IC50 values below 500 μg·mL-1, and 53 strains showed antiproliferative activity against HeLa cells, with IC50 values less than 500 μg·mL-1. Our results suggest that culturable bacteria associated with the ascidian Styela clava may be a promising source of novel bioactive compounds.
Collapse
|
3
|
Heo SY, Ko SC, Nam SY, Oh J, Kim YM, Kim JI, Kim N, Yi M, Jung WK. Fish bone peptide promotes osteogenic differentiation of MC3T3-E1 pre-osteoblasts through upregulation of MAPKs and Smad pathways activated BMP-2 receptor. Cell Biochem Funct 2018; 36:137-146. [PMID: 29392739 DOI: 10.1002/cbf.3325] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
Fish bone, a by-product of fishery processing, is composed of protein, calcium, and other minerals. The objective of this study was to investigate the effects of a bioactive peptide isolated from the bone of the marine fish, Johnius belengerii, on the osteoblastic differentiation of MC3T3-E1 pre-osteoblasts. Post consecutive purification by liquid chromatography, a potent osteogenic peptide, composed of 3 amino acids, Lys-Ser-Ala (KSA, MW: 304.17 Da), was identified. The purified peptide promoted cell proliferation, alkaline phosphatase activity, mineral deposition, and expression levels of phenotypic markers of osteoblastic differentiation in MC3T3-E1 pre-osteoblast. The purified peptide induced phosphorylation of mitogen-activated protein kinases, including p38 mitogen-activated protein kinase, extracellular regulated kinase, and c-Jun N-terminal kinase as well as Smads. As attested by molecular modelling study, the purified peptide interacted with the core interface residues in bone morphogenetic protein receptors with high affinity. Thus, the purified peptide could serve as a potential pharmacological substance for controlling bone metabolism.
Collapse
Affiliation(s)
- Seong-Yeong Heo
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Seok-Chun Ko
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Seung Yun Nam
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Junghwan Oh
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea.,Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Jae-Il Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, USA
| | - Myunggi Yi
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
4
|
|
5
|
Ko SC, Jung WK, Lee SH, Lee DH, Jeon YJ. Antihypertensive effect of an enzymatic hydrolysate from Styela clava flesh tissue in type 2 diabetic patients with hypertension. Nutr Res Pract 2017; 11:396-401. [PMID: 28989576 PMCID: PMC5621362 DOI: 10.4162/nrp.2017.11.5.396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/14/2017] [Accepted: 07/20/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/OBJECTIVES In this randomized, placebo-controlled, double-blind study, we evaluated the antihypertensive effects of enzymatic hydrolysate from Styela clava flesh tissue in patients with type 2 diabetes mellitus (T2DM) and hypertension. SUBJECTS/METHODS S. clava flesh tissue hydrolysate (SFTH) (n = 34) and placebo (n = 22) were randomly allocated to the study subjects. Each subject ingested two test capsules (500 mg) containing powdered SFTH (SFTH group) or placebo capsules (placebo group) during four weeks. RESULTS In the SFTH group, systolic and diastolic blood pressure decreased significantly 4 weeks after ingestion by 9.9 mmHg (P < 0.01) and 7.8 mmHg (P < 0.01), respectively. In addition, the SFTH group exhibited a significant decrease in hemoglobin A1c with a tendency toward improvement in homeostasis model assessment of insulin resistance, triglyceride, apolipoprotein B and plasma insulin levels after 4 weeks. No adverse effects were observed in other indexes, including biochemical and hematological parameters in both groups. CONCLUSION The results of our study suggested that SFTH exerts a regulatory, antihypertensive effect in patients with T2DM and hypertension.
Collapse
Affiliation(s)
- Seok-Chun Ko
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea
| | - Won-Kyo Jung
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Seung-Hong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan-si, Chungnam 31538, Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdong-daero 774 road, Incheon 21565, Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243, Korea
| |
Collapse
|
6
|
Peptides, Peptidomimetics, and Polypeptides from Marine Sources: A Wealth of Natural Sources for Pharmaceutical Applications. Mar Drugs 2017; 15:md15040124. [PMID: 28441741 PMCID: PMC5408270 DOI: 10.3390/md15040124] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
Nature provides a variety of peptides that are expressed in most living species. Evolutionary pressure and natural selection have created and optimized these peptides to bind to receptors with high affinity. Hence, natural resources provide an abundant chemical space to be explored in peptide-based drug discovery. Marine peptides can be extracted by simple solvent extraction techniques. The advancement of analytical techniques has made it possible to obtain pure peptides from natural resources. Extracted peptides have been evaluated as possible therapeutic agents for a wide range of diseases, including antibacterial, antifungal, antidiabetic and anticancer activity as well as cardiovascular and neurotoxin activity. Although marine resources provide thousands of possible peptides, only a few peptides derived from marine sources have reached the pharmaceutical market. This review focuses on some of the peptides derived from marine sources in the past ten years and gives a brief review of those that are currently in clinical trials or on the market.
Collapse
|