1
|
He S, Yuan Y, Nag A, Feng S, Afsarimanesh N, Han T, Mukhopadhyay SC, Organ DR. A Review on the Use of Impedimetric Sensors for the Inspection of Food Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5220. [PMID: 32698330 PMCID: PMC7400391 DOI: 10.3390/ijerph17145220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023]
Abstract
This paper exhibits a thorough review of the use of impedimetric sensors for the analysis of food quality. It helps to understand the contribution of some of the major types of impedimetric sensors that are used for this application. The deployment of impedimetric sensing prototypes has been advantageous due to their wide linear range of responses, detection of the target analyte at low concentrations, good stability, high accuracy and high reproducibility in the results. The choice of these sensors was classified on the basis of structure and the conductive material used to develop them. The first category included the use of nanomaterials such as graphene and metallic nanowires used to form the sensing devices. Different forms of graphene nanoparticles, such as nano-hybrids, nanosheets, and nano-powders, have been largely used to sense biomolecules in the micro-molar range. The use of conductive materials such as gold, copper, tungsten and tin to develop nanowire-based prototypes for the inspection of food quality has also been shown. The second category was based on conventional electromechanical circuits such as electronic noses and other smart systems. Within this sector, the standardized systems, such as electronic noses, and LC circuit -based systems have been explained. Finally, some of the challenges posed by the existing sensors have been listed out, along with an estimate of the increase in the number of sensors employed to assess food quality.
Collapse
Affiliation(s)
- Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (S.H.); (Y.Y.)
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (S.H.); (Y.Y.)
| | - Anindya Nag
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523000, China; (N.A.); (T.H.)
| | - Shilun Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Nasrin Afsarimanesh
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523000, China; (N.A.); (T.H.)
| | - Tao Han
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523000, China; (N.A.); (T.H.)
| | | | - Dominic Rowan Organ
- Department of Social Sciences, Heriot-Watt University, Edinburgh SC000278, UK;
| |
Collapse
|
2
|
Hameed A, Hussain SA, Ijaz MU, Ullah S, Pasha I, Suleria HAR. Farm to Consumer: Factors Affecting the Organoleptic Characteristics of Coffee. II: Postharvest Processing Factors. Compr Rev Food Sci Food Saf 2018; 17:1184-1237. [PMID: 33350164 DOI: 10.1111/1541-4337.12365] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 11/30/2022]
Abstract
The production and consumption of coffee are increasing despite the roadblocks to its agriculture and global trade. The unique, refreshing, and stimulating final cupping quality of coffee is the only reason for this rising production and consumption. Coffee quality is a multifaceted trait and is inevitably influenced by the way it is successively processed after harvesting. Reportedly, 60% of the quality attributes of coffee are governed by postharvest processing. The current review elaborates and establishes for the first time the relationship between different methods of postharvest processing of coffee and its varying organoleptic and sensory quality attributes. In view of the proven significance of each processing step, this review has been subdivided into three sections, secondary processing, primary processing, and postprocessing variables. Secondary processing addresses the immediate processing steps on the farm after harvest and storage before roasting. The primary processing section adheres specifically to roasting, grinding and brewing/extraction, topics which have been technically addressed more than any others in the literature and by industry. The postprocessing attribute section deals generally with interaction of the consumer with products of different visual appearance. Finally, there are still some bottlenecks which need to be addressed, not only to completely understand the relationship of varying postharvest processing methods with varying in-cup quality attributes, but also to devise the next generation of coffee processing technologies.
Collapse
Affiliation(s)
- Ahsan Hameed
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong Univ. of Technology, Zibo, Shandong, 255000, China.,National Inst. of Food Science & Technology, Univ. of Agriculture Faisalabad, Pakistan
| | - Syed Ammar Hussain
- National Inst. of Food Science & Technology, Univ. of Agriculture Faisalabad, Pakistan.,Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong Univ. of Technology, Zibo, P.R. China
| | - Muhammad Umair Ijaz
- National Inst. of Food Science & Technology, Univ. of Agriculture Faisalabad, Pakistan.,Key Laboratory of Meat Processing & Quality Control, College of Food Sciences, Nanjing Agriculture Univ., Jiangsu, P.R China
| | - Samee Ullah
- National Inst. of Food Science & Technology, Univ. of Agriculture Faisalabad, Pakistan.,Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong Univ. of Technology, Zibo, P.R. China
| | - Imran Pasha
- National Inst. of Food Science & Technology, Univ. of Agriculture Faisalabad, Pakistan
| | - Hafiz Ansar Rasul Suleria
- UQ Diamantina Inst., Translational Research Inst. Faculty of Medicine, The Univ. of Queensland, 37 Kent Street Woolloongabba, Brisbane, QLD, 4102, Australia.,Dept. of Food, Nutrition, Dietetics and Health, Kansas State Univ., Manhattan, Kans., 66506, U.S.A.,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin Univ., Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| |
Collapse
|
3
|
Derossi A, Ricci I, Caporizzi R, Fiore A, Severini C. How grinding level and brewing method (Espresso, American, Turkish) could affect the antioxidant activity and bioactive compounds in a coffee cup. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3198-3207. [PMID: 29230816 DOI: 10.1002/jsfa.8826] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Depending on geographical origin and cultural traditions, different brewing procedures are used all over the world to prepare a cup of coffee. In this work, we explored how three grinding levels of coffee powder and three coffee preparation methods - filtration (American), boiling (Turkish) and extraction under pressure (Espresso) - affect healthy compounds and physicochemical attributes in coffee served to consumers. RESULTS Grinding level slightly affected the quality of coffee, whereas the preparation method significantly influenced all in-cup attributes. When the content per cup was compared, the American coffee presented higher values of antioxidant activity and total phenol content than espresso and Turkish coffees. Caffeine content was 316, 112 and 64 mg for the American, Turkish and espresso coffee cup, respectively. CONCLUSION One American, three Turkish and five Espresso coffee cups contain similar amount of caffeine of 316, 336 and 320 mg, respectively which are below the maximum daily consumption (400 mg per day) suggested by the European Food Safety Authority. The extraction method affects the intake of bioactive and antioxidant substances with specific properties. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonio Derossi
- Department of Science of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| | - Ilde Ricci
- Department of Science of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| | - Rossella Caporizzi
- Department of Science of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| | - Anna Fiore
- Department of Science of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| | - Carla Severini
- Department of Science of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| |
Collapse
|
4
|
Abstract
Metal oxide materials have been applied in different fields due to their excellent functional properties. Metal oxides nanostructuration, preparation with the various morphologies, and their coupling with other structures enhance the unique properties of the materials and open new perspectives for their application in the food industry. Chemical gas sensors that are based on semiconducting metal oxide materials can detect the presence of toxins and volatile organic compounds that are produced in food products due to their spoilage and hazardous processes that may take place during the food aging and transportation. Metal oxide nanomaterials can be used in food processing, packaging, and the preservation industry as well. Moreover, the metal oxide-based nanocomposite structures can provide many advantageous features to the final food packaging material, such as antimicrobial activity, enzyme immobilization, oxygen scavenging, mechanical strength, increasing the stability and the shelf life of food, and securing the food against humidity, temperature, and other physiological factors. In this paper, we review the most recent achievements on the synthesis of metal oxide-based nanostructures and their applications in food quality monitoring and active and intelligent packaging.
Collapse
|
5
|
Wojnowski W, Majchrzak T, Dymerski T, Gębicki J, Namieśnik J. Portable Electronic Nose Based on Electrochemical Sensors for Food Quality Assessment. SENSORS 2017; 17:s17122715. [PMID: 29186754 PMCID: PMC5750822 DOI: 10.3390/s17122715] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/20/2017] [Accepted: 11/22/2017] [Indexed: 11/20/2022]
Abstract
The steady increase in global consumption puts a strain on agriculture and might lead to a decrease in food quality. Currently used techniques of food analysis are often labour-intensive and time-consuming and require extensive sample preparation. For that reason, there is a demand for novel methods that could be used for rapid food quality assessment. A technique based on the use of an array of chemical sensors for holistic analysis of the sample’s headspace is called electronic olfaction. In this article, a prototype of a portable, modular electronic nose intended for food analysis is described. Using the SVM method, it was possible to classify samples of poultry meat based on shelf-life with 100% accuracy, and also samples of rapeseed oil based on the degree of thermal degradation with 100% accuracy. The prototype was also used to detect adulterations of extra virgin olive oil with rapeseed oil with 82% overall accuracy. Due to the modular design, the prototype offers the advantages of solutions targeted for analysis of specific food products, at the same time retaining the flexibility of application. Furthermore, its portability allows the device to be used at different stages of the production and distribution process.
Collapse
Affiliation(s)
- Wojciech Wojnowski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (T.M.); (T.D.); (J.N.)
- Correspondence: ; Tel.: +48-583-486-411
| | - Tomasz Majchrzak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (T.M.); (T.D.); (J.N.)
| | - Tomasz Dymerski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (T.M.); (T.D.); (J.N.)
| | - Jacek Gębicki
- Department of Chemical and Process Engineering, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (T.M.); (T.D.); (J.N.)
| |
Collapse
|