1
|
Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Olive oil is considered one of the most valuable vegetable oils and is highly appreciated by consumers for its specific and distinguishable taste and aroma, as well as its nutritional value. Sterols and triterpene diols are important carriers of bioactive properties of olive oil and are responsible for some of the beneficial effects of its consumption on human health, such as lowering serum LDL-cholesterol levels and significantly reducing the risk of cardiovascular diseases. The concentration of total sterols and the proportions of particular sterols and triterpene diols are among the parameters used to verify and prove the authenticity of olive oil in accordance with the EU and other countries’ regulations. Finally, their composition has been shown to have high discrimination potential for ensuring traceability with respect to variety, geographical origin, harvest date, and other factors. For these reasons, the research on sterols and triterpene diols in olive oil is an ever-growing field of scientific interest with great practical importance. This review focuses on all the important aspects of sterols and triterpene diols in olive oil, from their chemical structure, biosynthesis, occurrence and role in plants, health benefits, and their use in official controls of olive oil purity and authenticity, to a conclusive survey on the recent findings about the effects of different factors of influence on their content and composition, with a detailed comparative analysis of studies that investigated the effects of the two most important factors, variety and ripening degree.
Collapse
|
2
|
Characterization of Olive Oils Obtained from Minor Accessions in Calabria (Southern Italy). Foods 2021; 10:foods10020305. [PMID: 33540812 PMCID: PMC7912949 DOI: 10.3390/foods10020305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
The valorization of minor accessions of olive is potentially a good way to improve the qualitative production of a specific territory. Olive oils of four minor accessions (Ciciarello, Tonda di Filogaso, and Ottobratica Calipa and Ottobratica Cannavà clones) produced in the same area of the Calabria region were characterized for the principal qualitative analyses at two drupe harvesting periods (October and November). Good quality in terms of free acidity, peroxides, spectrophotometric indexes, and fatty acid composition was observed in olive oils produced at both drupe harvesting times, with the exception of those of Tonda di Filogaso, which showed a free acidity level over the legal limit for extra virgin olive oil in the second harvesting time. All of the olive oils possessed at both production periods averagely abundant total polyphenols (460–778 mg/kg) and tocopherols (224–595 mg/kg), and the amounts changed in the experimental years for expected different environmental variations. Ottobratica Cannavà and Ottobratica Calipa clones showed some peculiar qualitative characteristics (free acidity, peroxides, fatty acid composition, and total polyphenols), distancing themselves from the principal variety of reference, Ottobratica.
Collapse
|
3
|
López-Yerena A, Ninot A, Lozano-Castellón J, Escribano-Ferrer E, Romero-Aroca AJ, Belaj A, Vallverdú-Queralt A, Lamuela-Raventós RM. Conservation of Native Wild Ivory-White Olives from the MEDES Islands Natural Reserve to Maintain Virgin Olive Oil Diversity. Antioxidants (Basel) 2020; 9:E1009. [PMID: 33080812 PMCID: PMC7603032 DOI: 10.3390/antiox9101009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/18/2023] Open
Abstract
Food diversity, and in particular genetic diversity, is being lost at an alarming rate. Protection of natural areas is crucial to safeguard the world's threatened species. The Medes Islands (MI), located in the northwest Mediterranean Sea, are a protected natural reserve. Wild olive trees also known as oleasters make up part of the vegetation of the Meda Gran island. Among them, in 2012, a wild albino ivory-white olive tree with fruit was identified. Fruits were collected from this tree and their seeds were first sown in a greenhouse and then planted in an orchard for purposes of ex situ preservation. Seven out of the 78 seedling trees obtained (12%) produced ivory-white fruits. In autumn 2018, fruits from these trees were sampled. Although the fruits had low oil content, virgin olive oil with unique sensory, physicochemical, and stability characteristics was produced. With respect to the polyphenols content, oleacein was the main compound identified (373.29 ± 72.02 mg/kg) and the oleocanthal was the second most abundant phenolic compound (204.84 ± 52.58 mg/kg). Regarding pigments, samples were characterized by an intense yellow color, with 12.5 ± 4.6 mg/kg of chlorophyll and 9.2 ± 3.3 mg/kg of carotenoids. Finally, oleic acid was the main fatty acid identified. This study explored the resources of the natural habitat of the MI as a means of enrichment of olive oil diversity and authenticity of this traditional Mediterranean food.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Pharmacy and Food Sciences School, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (J.L.-C.); (A.V.-Q.)
| | - Antònia Ninot
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology research team, 43120 Constantí, Spain; (A.N.); (A.J.R.-A.)
| | - Julián Lozano-Castellón
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Pharmacy and Food Sciences School, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (J.L.-C.); (A.V.-Q.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain;
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain;
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Biopharmaceutics and Pharmacokinetics Unit, Institute of Nanoscience and Nanotechnology (IN2UB), Pharmacy and Food Sciences School, University of Barcelona, 08028 Barcelona, Spain
| | - Agustí J. Romero-Aroca
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology research team, 43120 Constantí, Spain; (A.N.); (A.J.R.-A.)
| | - Angjelina Belaj
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)—Centro “Alameda del Obispo”, Avda. Menéndez Pidal s/n, E-14004 Córdoba, Spain;
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Pharmacy and Food Sciences School, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (J.L.-C.); (A.V.-Q.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain;
| | - Rosa M. Lamuela-Raventós
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Pharmacy and Food Sciences School, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (J.L.-C.); (A.V.-Q.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain;
| |
Collapse
|