1
|
Troccoli A, Ficco DBM, Platani C, D’Egidio MG, Borrelli GM. Prediction of Pasta Colour Considering Traits Involved in Colour Expression of Durum Wheat Semolina. Foods 2025; 14:392. [PMID: 39941985 PMCID: PMC11817165 DOI: 10.3390/foods14030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Colour plays an important role among the quality traits of durum wheat, attracting consumer attention for the pasta market. The traits involved in colour expression are affected by genotype, environment, and processing. In the present study, based on eighteen durum wheat genotypes grown in eight environments, the effects of different traits related to colour expression were evaluated. Carotenoid pigments, such as lutein and β-carotene content; yellow and brown indices; and lipoxygenase, peroxidase, and polyphenoloxidase activities were analysed in semolina. The effects of processing were evaluated by measuring both the content of carotenoid pigments and colorimetric indices in pasta. The genotype, the environment, and their interaction were significant for all traits, although with a strong prevalence of genotypic effects, except for the brown index. After processing, a decrease in carotenoid content and the yellow index (86.7% and 16.0%, respectively) was observed, while the brown index increased (8.2%). A multiple regression analysis was performed on semolina traits, and the yellow index emerged as the main predictor for pasta colour, strengthening this trait as a fast and reliable criterion of selection. A High-Performance Index tool was also used to identify the genotype and environment that better combine all traits, positively influencing colour expression. All this information can be used in durum wheat breeding programmes for the prediction of pasta colour.
Collapse
Affiliation(s)
- Antonio Troccoli
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, m 25200, 71122 Foggia, Italy; (A.T.); (D.B.M.F.)
| | - Donatella Bianca Maria Ficco
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, m 25200, 71122 Foggia, Italy; (A.T.); (D.B.M.F.)
| | - Cristiano Platani
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Orticoltura e Florovivaismo, Località Stella, Via Salaria, 1, 63030 Monsampolo del Tronto, Italy;
| | - Maria Grazia D’Egidio
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Manziana, 30, 00189 Roma, Italy;
| | - Grazia Maria Borrelli
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, m 25200, 71122 Foggia, Italy; (A.T.); (D.B.M.F.)
| |
Collapse
|
2
|
Wiwart M, Suchowilska E, Stuper-Szablewska K, Przybylska A, Wachowska U, Gontarz D. Variation in the concentrations of phenolic compounds and carotenoids in the grain of a large collection of Triticum durum Desf. accessions. J Cereal Sci 2024; 116:103842. [DOI: 10.1016/j.jcs.2023.103842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Tunklová B, Šerá B, Šrámková P, Ďurčányová S, Šerý M, Kováčik D, Zahoranová A, Hnilička F. Growth Stimulation of Durum Wheat and Common Buckwheat by Non-Thermal Atmospheric Pressure Plasma. PLANTS (BASEL, SWITZERLAND) 2023; 12:4172. [PMID: 38140503 PMCID: PMC10748235 DOI: 10.3390/plants12244172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The grains of durum wheat (Triticum durum Desf.) and achenes of common buckwheat (Fagopyrum esculentum Moench) were tested after treatment with two sources of non-thermal atmospheric pressure plasma (DCSBD, MSDBD) with different treatment times (0, 3, 5, 10, 20, 30, and 40 s). The effect of these treatments was monitored with regard to the seed surface diagnostics (water contact angle-WCA, chemical changes by Fourier transform infrared spectroscopy-FTIR); twenty parameters associated with germination and initial seed growth were monitored. A study of the wettability confirmed a decrease in WCA values indicating an increase in surface energy and hydrophilicity depending on the type of seed, plasma source, and treatment time. Surface analysis by attenuated total reflectance FTIR (ATR-FTIR) showed no obvious changes in the chemical bonds on the surface of the plasma-treated seeds, which confirms the non-destructive effect of the plasma on the chemical composition of the seed shell. A multivariate analysis of the data showed many positive trends (not statistically significant) in germination and initial growth parameters. The repeated results for germination rate and root/shoot dry matter ratio indicate the tendency of plants to invest in underground organs. Durum wheat required longer treatment times with non-thermal plasma (10 s, 20 s) for germination and early growth, whereas buckwheat required shorter times (5 s, 10 s). The responses of durum wheat grains to the two non-thermal plasma sources used were equal. In contrast, the responses of buckwheat achenes were more favorable to MSDBD treatment than to DCSBD.
Collapse
Affiliation(s)
- Barbora Tunklová
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (B.T.); (F.H.)
| | - Božena Šerá
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Petra Šrámková
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina, 842 48 Bratislava, Slovakia; (P.Š.); (S.Ď.); (A.Z.)
| | - Sandra Ďurčányová
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina, 842 48 Bratislava, Slovakia; (P.Š.); (S.Ď.); (A.Z.)
| | - Michal Šerý
- Department of Physics, Faculty of Education, University of South Bohemia, Jeronýmova 10, 371 15 České Budějovice, Czech Republic;
| | - Dušan Kováčik
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina, 842 48 Bratislava, Slovakia; (P.Š.); (S.Ď.); (A.Z.)
| | - Anna Zahoranová
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina, 842 48 Bratislava, Slovakia; (P.Š.); (S.Ď.); (A.Z.)
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (B.T.); (F.H.)
| |
Collapse
|
4
|
Kurinjery A, Kulanthaiyesu A. Anti-hyaluronidase and cytotoxic activities of fucoxanthin cis/trans isomers extracted and characterized from 13 brown seaweeds. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Li XH, Guan PF, Huang S, Zheng XW, Wu BB, Zhao JJ, Qiao L, Guo PY, Zheng J. Evaluation and genetic variation of lutein content in Chinese common wheat. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Does Plant Breeding for Antioxidant-Rich Foods Have an Impact on Human Health? Antioxidants (Basel) 2022; 11:antiox11040794. [PMID: 35453479 PMCID: PMC9024522 DOI: 10.3390/antiox11040794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Given the general beneficial effects of antioxidants-rich foods on human health and disease prevention, there is a continuous interest in plant secondary metabolites conferring attractive colors to fruits and grains and responsible, together with others, for nutraceutical properties. Cereals and Solanaceae are important components of the human diet, thus, they are the main targets for functional food development by exploitation of genetic resources and metabolic engineering. In this review, we focus on the impact of antioxidants-rich cereal and Solanaceae derived foods on human health by analyzing natural biodiversity and biotechnological strategies aiming at increasing the antioxidant level of grains and fruits, the impact of agronomic practices and food processing on antioxidant properties combined with a focus on the current state of pre-clinical and clinical studies. Despite the strong evidence in in vitro and animal studies supporting the beneficial effects of antioxidants-rich diets in preventing diseases, clinical studies are still not sufficient to prove the impact of antioxidant rich cereal and Solanaceae derived foods on human
Collapse
|