1
|
Bi Y, Liang L, Qiao K, Luo J, Liu X, Sun B, Zhang Y. A comprehensive review of plant-derived salt substitutes: Classification, mechanism, and application. Food Res Int 2024; 194:114880. [PMID: 39232518 DOI: 10.1016/j.foodres.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
The diseases caused by excessive sodium intake derived from NaCl consumption have attracted widespread attention worldwide, and many researchers are committed to finding suitable ways to reduce sodium intake during the dietary process. Salt substitute is considered an effective way to reduce sodium intake by replacing all/part of NaCl in food without reducing the saltiness while minimizing the impact on the taste and acceptability of the food. Plant-derived natural ingredients are generally considered safe and reliable, and extensive research has shown that certain plant extracts or specific components are effective salt substitutes, which can also give food additional health benefits. However, these plant-derived salt substitutes (PSS) have not been systematically recognized by the public and have not been well adopted in the food industry. Therefore, a comprehensive review of PSS, including its material basis, flavor characteristics, and taste mechanism is helpful for a deeper understanding of PSS, accelerating its research and development, and promoting its application.
Collapse
Affiliation(s)
- Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jin Luo
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xialei Liu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Fonseca-Bustos V, Madera-Santana TJ, Martínez-Núñez YY, Robles-Ozuna LE, Montoya-Ballesteros LDC. Techniques of incorporation of salty compounds, food matrix, and sodium behaviour and its effect over saltiness perception: an overview. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:861-869. [PMID: 38487281 PMCID: PMC10933219 DOI: 10.1007/s13197-023-05861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 03/17/2024]
Abstract
The salty taste is usually associated with the positively charged ion sodium present in sodium chloride. Due to its relevance in the food industry, there have been several studies to determine how this ion behaves in various food matrices, or the use of techniques to improve saltiness perception to reduce the amount necessary for savoury food. Several databases were searched, and it was discovered that sodium can interact with the protein, modifying its mobility, as well as, other components of the food matrix, such as fat, that seem to interfere with saltiness perception, increasing or reducing it. Several techniques were used to identify the interaction between sodium and the food matrix, as well as sensory testing to determine the influence of different modification strategies to enhance the saltiness perception. Due to the multiple factors involved in the salty taste, understanding the effect of the technique to modify saltiness perception, the interaction of the matrix components of the food, and the sodium interaction with those components, can be of use in the developing process of foods with a reduction in the sodium content. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05861-6.
Collapse
Affiliation(s)
- Verónica Fonseca-Bustos
- Luz del Carmen Montoya-Ballesteros, Centro de Investigación en Alimentación y Desarrollo, A.C., (CIAD). Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora CP 83304 México
| | - Tomás J. Madera-Santana
- Luz del Carmen Montoya-Ballesteros, Centro de Investigación en Alimentación y Desarrollo, A.C., (CIAD). Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora CP 83304 México
| | - Yesica Y. Martínez-Núñez
- Luz del Carmen Montoya-Ballesteros, Centro de Investigación en Alimentación y Desarrollo, A.C., (CIAD). Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora CP 83304 México
| | - Luis E. Robles-Ozuna
- Luz del Carmen Montoya-Ballesteros, Centro de Investigación en Alimentación y Desarrollo, A.C., (CIAD). Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora CP 83304 México
| | - Luz del Carmen Montoya-Ballesteros
- Luz del Carmen Montoya-Ballesteros, Centro de Investigación en Alimentación y Desarrollo, A.C., (CIAD). Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora CP 83304 México
| |
Collapse
|
3
|
Taladrid D, Rebollo-Hernanz M, Martin-Cabrejas MA, Moreno-Arribas MV, Bartolomé B. Grape Pomace as a Cardiometabolic Health-Promoting Ingredient: Activity in the Intestinal Environment. Antioxidants (Basel) 2023; 12:antiox12040979. [PMID: 37107354 PMCID: PMC10135959 DOI: 10.3390/antiox12040979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. These components and their metabolites generated at the intestinal level have been shown to play an important role in promoting health locally and systemically. This review focuses on the potential bioactivities of GP in the intestinal environment, which is the primary site of interaction for food components and their biological activities. These mechanisms include (i) regulation of nutrient digestion and absorption (GP has been shown to inhibit enzymes such as α-amylase and α-glucosidase, protease, and lipase, which can help to reduce blood glucose and lipid levels, and to modulate the expression of intestinal transporters, which can also help to regulate nutrient absorption); (ii) modulation of gut hormone levels and satiety (GP stimulates GLP-1, PYY, CCK, ghrelin, and GIP release, which can help to regulate appetite and satiety); (iii) reinforcement of gut morphology (including the crypt-villi structures, which can improve nutrient absorption and protect against intestinal damage); (iv) protection of intestinal barrier integrity (through tight junctions and paracellular transport); (v) modulation of inflammation and oxidative stress triggered by NF-kB and Nrf2 signaling pathways; and (vi) impact on gut microbiota composition and functionality (leading to increased production of SCFAs and decreased production of LPS). The overall effect of GP within the gut environment reinforces the intestinal function as the first line of defense against multiple disorders, including those impacting cardiometabolic health. Future research on GP's health-promoting properties should consider connections between the gut and other organs, including the gut-heart axis, gut-brain axis, gut-skin axis, and oral-gut axis. Further exploration of these connections, including more human studies, will solidify GP's role as a cardiometabolic health-promoting ingredient and contribute to the prevention and management of cardiovascular diseases.
Collapse
Affiliation(s)
- Diego Taladrid
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria A Martin-Cabrejas
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Begoña Bartolomé
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| |
Collapse
|
4
|
Dunteman AN, McKenzie EN, Yang Y, Lee Y, Lee SY. Compendium of sodium reduction strategies in foods: A scoping review. Compr Rev Food Sci Food Saf 2022; 21:1300-1335. [PMID: 35201660 DOI: 10.1111/1541-4337.12915] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/04/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022]
Abstract
In response to health concerns generated by increased sodium intake, many new approaches have been studied to reduce the sodium content in processed food. It has been suggested that reducing sodium in the food supply may be the most appropriate solution. The aim of this scoping review was to establish what sodium reduction strategies are effective in maintaining acceptable sensory qualities for various food industry applications. Studies that evaluate and report on the effectiveness of a sodium reduction strategy relevant to food and included outcomes detailing how the strategies were received by human subjects using sensory data are included, as well as book chapters, literature reviews, and patents focusing on sodium reduction strategies. Only those published in English and since 1970 were included. Literature was obtained through Scopus, PubMed, EBSCOhost, and ScienceDirect databases, whereas patents were obtained through US Patent Trademark Office, Google Patents, and PATENTSCOPE databases. Two-hundred and seventy-seven primary studies, 27 literature reviews, 10 book chapters, and 143 patents were selected for inclusion. Data extracted included details such as analytical methods, broad and specific treatment categories, significant outcomes, and limitations among other material. Sodium reduction methods were categorized as either salt removal, salt replacement, flavor modification, functional modification, or physical modification. Although salt removal and salt replacement were the majority of included studies, future research would benefit from combining methods from other categories while investigating the impact on sensory characteristics, technological aspects, and consumer perception of the strategy.
Collapse
Affiliation(s)
- Aubrey N Dunteman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Elle N McKenzie
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Ying Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Youngsoo Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Soo-Yeun Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
5
|
Taladrid D, de Celis M, Belda I, Bartolomé B, Moreno-Arribas MV. Hypertension- and glycaemia-lowering effects of a grape-pomace-derived seasoning in high-cardiovascular risk and healthy subjects. Interplay with the gut microbiome. Food Funct 2022; 13:2068-2082. [PMID: 35107113 DOI: 10.1039/d1fo03942c] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose: Grape pomace (GP) is a winery by-product rich in polyphenols and dietary fibre. Some recent results suggest that GP-derived extracts could be promising additives in food, specially recommended for low-salt diets. The hypothesis tested in this paper is that the regular consumption of GP-derived seasonings could help in the control of hypertension and glycaemia. Methods: A randomized intervention study (6 weeks) was performed in high-risk cardiovascular subjects (n = 17) and in healthy subjects (n = 12) that were randomly allocated into intervention (2 g day-1 of GP seasoning) or control (no seasoning consumed) groups. Blood samples, faeces, urine and blood pressure (BP) were taken at the baseline and at the end of the intervention. Faecal samples were analysed for microbiota composition (16S rRNA gene sequencing) and microbial-derived metabolites (short chain fatty acids and phenolic metabolites). Results: Among the clinical parameters studied, BP and fasting blood glucose significantly decreased (p < 0.05) after the seasoning intervention, but not for the control group. Notably, application of a novel approach based on ASV (Amplicon Sequence Variant) co-occurrence networks allowed us to identify some bacterial communities whose relative abundances were related with metadata. Conclusion: Our primary findings suggest that GP-seasoning may help in the modulation of cardiometabolic risk factors, mainly in the early stages. Furthermore, it evidences modulation of gut microbiota and functional bacterial communities by grape pomace, which might mediate the cardiometabolic effects of this by-product.
Collapse
Affiliation(s)
- Diego Taladrid
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Miguel de Celis
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040-Madrid, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040-Madrid, Spain
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, 28049 Madrid, Spain.
| | | |
Collapse
|
6
|
Taladrid D, González de Llano D, Zorraquín-Peña I, Tamargo A, Silva M, Molinero N, Moreno-Arribas MV, Bartolomé B. Gastrointestinal Digestion of a Grape Pomace Extract: Impact on Intestinal Barrier Permeability and Interaction with Gut Microbiome. Nutrients 2021; 13:nu13072467. [PMID: 34371979 PMCID: PMC8308781 DOI: 10.3390/nu13072467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 01/01/2023] Open
Abstract
Grape pomace (GP) is a winemaking by-product rich in polyphenols and fibre. Supplementation with GP extracts has shown potential benefits against oxidative stress- and inflammation-related pathologies. As a new nutritional target, this paper explores the impact of the ingestion of a grape pomace extract on intestinal barrier functionality. A GP extract was sequentially subjected to gastrointestinal and colonic digestion using the dynamic gastrointestinal simulator (simgi®). This generated two simulated fluids: intestinal-digested extract (IDE) and colonic-digested extract (CDE). The effects of these two fluids on paracellular permeability and the expression of tight junction (TJ) proteins (i.e., zonula occludens-1 (ZO-1) and occludin) were assessed in Caco-2-cell monolayers grown in Transwell® inserts. The IDE fluid significantly (p < 0.001) reduced the paracellular transport of FITC-dextran with respect to the control, whereas no significant differences (p > 0.05) were found for CDE, which could be due, at least partially, to the pro-leaky effect of the colonic digestion medium. Accordant slight increases in the mRNA levels of both ZO-1 and occludin were observed for IDE, but without statistical significance. Additionally, the colonic fermentation of the GP extract promoted the production of short-chain fatty acids (SCFA) and phenolic metabolites and led to changes in the relative abundance of some bacteria that might affect paracellular permeability. Overall, this paper reports first trends about the effects of grape pomace extracts on intestinal permeability that would require further confirmation in future experiments.
Collapse
|