1
|
Li Y, Wang Z, Yang Y, Deng Y, Shen Y, Wang X, Wang W, Liu H. Exploring low- and high-order functional connectivity in chronic ankle instability through resting-state fMRI. Med Phys 2025; 52:565-575. [PMID: 39436380 DOI: 10.1002/mp.17474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/08/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND The functional connectivity (FC) has emerged as a valuable tool for comprehending the cerebral operational mechanism. Understanding the FC changes in patients with chronic ankle instability (CAI) helps reveal the underlying central nervous system mechanisms of the disease and provides clues for developing personalized treatment plans. OBJECTIVES To explore differences between low- and high-order FC in patients with CAI and healthy controls, as well as the correlation among the feature connections and clinical data. METHODS In our study, we recruited 40 patients with CAI and 42 healthy individuals who had not experienced ankle injuries. All participants underwent clinical assessments of ankle joints, collected the number of ankle sprains within the past 6 months, and performed resting-state functional magnetic resonance imaging (rs-fMRI) scans. Pearson correlation and matrix variate normal distribution (MVND) were used to construct low-order and high-order FC networks, respectively. Feature selections between groups were performed by two-sample t-tests, and a multi-kernel support vector machine (MK-SVM) was subsequently applied to combine the multiple connection patterns for the classification. Using leave-one-out cross-validation (LOOCV) to assess classification performance and identify the consensus connections contributing most to classification. RESULTS FC was reduced in certain brain regions of CAI patients. More consensus connections were recognized in low-order FC network than in high-order FC network. The highest classification accuracy of 91.30% was achieved by combining three connection patterns. The most discriminating functional connections were primarily centered on the default mode network and spanned the visual network, sensorimotor network, ventral attention network, and central executive network. In addition, FC strength in the left cingulate and paracingulate gyrus (DCG.L) and right superior temporal gyrus (STG.R) was negatively correlated with the number of ankle sprains in the past 6 months in all FC networks (p < 0.05). CONCLUSIONS Abnormalities in connectivity in patients with CAI were observed in both low- and high-order FC networks. The adaptive changes in the brain related to CAI may extend beyond the sensorimotor networks, primarily involving higher-level default mode networks associated with attention. Moreover, the FC strength between DCG.L and STG.R may predict the risk of ankle re-sprains and help clinicians develop personalized treatment plans.
Collapse
Affiliation(s)
- Yajie Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, P.R. China
| | - Zhifeng Wang
- Department of Orthopedic, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Yang Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Yan Deng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Yiyuan Shen
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Xu Wang
- Department of Orthopedic, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Weiwei Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Hanqiu Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
2
|
Hilderley AJ, Taylor MJ, Fehlings D, Chen JL, Wright FV. Optimization of fMRI methods to determine laterality of cortical activation during ankle movements of children with unilateral cerebral palsy. Int J Dev Neurosci 2018; 66:54-62. [PMID: 29413879 DOI: 10.1016/j.ijdevneu.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022] Open
Abstract
Measurement of laterality of motor cortical activations may provide valuable information about lower limb control in children with unilateral cerebral palsy (UCP). Evidence from upper limb research suggests that increased contralateral activity may accompany functional gains. However, lower limb areas of activation and associated changes have been underexplored due to challenges with imaging motor cortical leg representations. In this study, methods for a task-based functional magnetic resonance imaging (fMRI) ankle dorsiflexion paradigm were refined with three pilot groups of participants: (i) adults (n = 5); (ii) typically developing (TD) children (n = 5) and; (iii) children with UCP (n = 4). Parameters of experimental design, task resistance, reproducibility, and pre-scan procedures were tested/refined using a staged development approach with additions or changes introduced if image quality did not meet pre-defined standards. When image quality was acceptable for two consecutive participants, the next participant group was recruited to test/refine the next parameter. The final paradigm involved an event-related design of a single dorsiflexion movement against individualized resistance, with two runs per leg. It included a pre-scan session to increase child comfort and determine task resistance. This paradigm produced valid data for laterality index (LI) calculations to determine the ratio of activity in each hemisphere. Ventricle and lesion masks were used in non-linear image registration, and individual thresholds were used for extent-based LI calculations. LI of dominant ankle movements were contralateral (LI ≥ +0.2) for TD children (mean LI = +0.89, std = 0.27) and children with UCP (mean LI = +0.86, std = 0.26). For the affected ankle of children with UCP, LI values indicated ipsilateral and/or contralateral activation (mean LI = +0.02, std = 0.71, range -0.92 to +1.00). This fMRI paradigm will support investigations of cortical activation and mechanisms of skill improvement following lower limb interventions.
Collapse
Affiliation(s)
- A J Hilderley
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, Toronto, M4K 1E1, Canada; Rehabilitation Sciences Institute, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada.
| | - M J Taylor
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada; Department of Medical Imaging, University of Toronto, 263 McCaul Street, Toronto, M5T 1W7, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, M5S 3G3, Canada.
| | - D Fehlings
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, Toronto, M4K 1E1, Canada; Rehabilitation Sciences Institute, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada; Department of Developmental Paediatrics, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - J L Chen
- Rehabilitation Sciences Institute, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada; Hurvitz Brain Sciences Program, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, M4N 3M5, Canada; Department of Physical Therapy, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada.
| | - F V Wright
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, Toronto, M4K 1E1, Canada; Rehabilitation Sciences Institute, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada; Department of Physical Therapy, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada.
| |
Collapse
|