1
|
Cortical Processing of Binaural Cues as Shown by EEG Responses to Random-Chord Stereograms. J Assoc Res Otolaryngol 2021; 23:75-94. [PMID: 34904205 PMCID: PMC8783002 DOI: 10.1007/s10162-021-00820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/06/2021] [Indexed: 10/26/2022] Open
Abstract
Spatial hearing facilitates the perceptual organization of complex soundscapes into accurate mental representations of sound sources in the environment. Yet, the role of binaural cues in auditory scene analysis (ASA) has received relatively little attention in recent neuroscientific studies employing novel, spectro-temporally complex stimuli. This may be because a stimulation paradigm that provides binaurally derived grouping cues of sufficient spectro-temporal complexity has not yet been established for neuroscientific ASA experiments. Random-chord stereograms (RCS) are a class of auditory stimuli that exploit spectro-temporal variations in the interaural envelope correlation of noise-like sounds with interaurally coherent fine structure; they evoke salient auditory percepts that emerge only under binaural listening. Here, our aim was to assess the usability of the RCS paradigm for indexing binaural processing in the human brain. To this end, we recorded EEG responses to RCS stimuli from 12 normal-hearing subjects. The stimuli consisted of an initial 3-s noise segment with interaurally uncorrelated envelopes, followed by another 3-s segment, where envelope correlation was modulated periodically according to the RCS paradigm. Modulations were applied either across the entire stimulus bandwidth (wideband stimuli) or in temporally shifting frequency bands (ripple stimulus). Event-related potentials and inter-trial phase coherence analyses of the EEG responses showed that the introduction of the 3- or 5-Hz wideband modulations produced a prominent change-onset complex and ongoing synchronized responses to the RCS modulations. In contrast, the ripple stimulus elicited a change-onset response but no response to ongoing RCS modulation. Frequency-domain analyses revealed increased spectral power at the fundamental frequency and the first harmonic of wideband RCS modulations. RCS stimulation yields robust EEG measures of binaurally driven auditory reorganization and has potential to provide a flexible stimulation paradigm suitable for isolating binaural effects in ASA experiments.
Collapse
|
2
|
Ng CW, Recanzone GH. Age-Related Changes in Temporal Processing of Rapidly-Presented Sound Sequences in the Macaque Auditory Cortex. Cereb Cortex 2019; 28:3775-3796. [PMID: 29040403 DOI: 10.1093/cercor/bhx240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
The mammalian auditory cortex is necessary to resolve temporal features in rapidly-changing sound streams. This capability is crucial for speech comprehension in humans and declines with normal aging. Nonhuman primate studies have revealed detrimental effects of normal aging on the auditory nervous system, and yet the underlying influence on temporal processing remains less well-defined. Therefore, we recorded from the core and lateral belt areas of auditory cortex when awake young and old monkeys listened to tone-pip and noise-burst sound sequences. Elevated spontaneous and stimulus-driven activity were the hallmark characteristics in old monkeys. These old neurons showed isomorphic-like discharge patterns to stimulus envelopes, though their phase-locking was less precise. Functional preference in temporal coding between the core and belt existed in the young monkeys but was mostly absent in the old monkeys, in which old belt neurons showed core-like response profiles. Finally, the analysis of population activity patterns indicated that the aged auditory cortex demonstrated a homogenous, distributed coding strategy, compared to the selective, sparse coding strategy observed in the young monkeys. Degraded temporal fidelity and highly-responsive, broadly-tuned cortical responses could underlie how aged humans have difficulties to resolve and track dynamic sounds leading to speech processing deficits.
Collapse
Affiliation(s)
- Chi-Wing Ng
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, CA, USA.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Salminen NH, Jones SJ, Christianson GB, Marquardt T, McAlpine D. A common periodic representation of interaural time differences in mammalian cortex. Neuroimage 2018; 167:95-103. [PMID: 29122721 PMCID: PMC5854251 DOI: 10.1016/j.neuroimage.2017.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/01/2017] [Accepted: 11/04/2017] [Indexed: 11/16/2022] Open
Abstract
Binaural hearing, the ability to detect small differences in the timing and level of sounds at the two ears, underpins the ability to localize sound sources along the horizontal plane, and is important for decoding complex spatial listening environments into separate objects – a critical factor in ‘cocktail-party listening’. For human listeners, the most important spatial cue is the interaural time difference (ITD). Despite many decades of neurophysiological investigations of ITD sensitivity in small mammals, and computational models aimed at accounting for human perception, a lack of concordance between these studies has hampered our understanding of how the human brain represents and processes ITDs. Further, neural coding of spatial cues might depend on factors such as head-size or hearing range, which differ considerably between humans and commonly used experimental animals. Here, using magnetoencephalography (MEG) in human listeners, and electro-corticography (ECoG) recordings in guinea pig—a small mammal representative of a range of animals in which ITD coding has been assessed at the level of single-neuron recordings—we tested whether processing of ITDs in human auditory cortex accords with a frequency-dependent periodic code of ITD reported in small mammals, or whether alternative or additional processing stages implemented in psychoacoustic models of human binaural hearing must be assumed. Our data were well accounted for by a model consisting of periodically tuned ITD-detectors, and were highly consistent across the two species. The results suggest that the representation of ITD in human auditory cortex is similar to that found in other mammalian species, a representation in which neural responses to ITD are determined by phase differences relative to sound frequency rather than, for instance, the range of ITDs permitted by head size or the absolute magnitude or direction of ITD. ITD tuning is studied in human MEG and guinea pig ECoG with identical stimuli. Auditory cortical tuning to ITD is highly consistent across species. Results are consistent with a periodic, frequency-dependent code.
Collapse
Affiliation(s)
- Nelli H Salminen
- Brain and Mind Laboratory, Dept. of Neuroscience and Biomedical Engineering, MEG Core, Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland.
| | - Simon J Jones
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | | | | | - David McAlpine
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK; Dept of Linguistics, Australian Hearing Hub, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
4
|
Scott BH, Mishkin M. Auditory short-term memory in the primate auditory cortex. Brain Res 2016; 1640:264-77. [PMID: 26541581 PMCID: PMC4853305 DOI: 10.1016/j.brainres.2015.10.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/17/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
Abstract
Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- Brian H Scott
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Bigelow J, Ng CW, Poremba A. Local field potential correlates of auditory working memory in primate dorsal temporal pole. Brain Res 2015; 1640:299-313. [PMID: 26718730 DOI: 10.1016/j.brainres.2015.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/06/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Dorsal temporal pole (dTP) is a cortical region at the rostral end of the superior temporal gyrus that forms part of the ventral auditory object processing pathway. Anatomical connections with frontal and medial temporal areas, as well as a recent single-unit recording study, suggest this area may be an important part of the network underlying auditory working memory (WM). To further elucidate the role of dTP in auditory WM, local field potentials (LFPs) were recorded from the left dTP region of two rhesus macaques during an auditory delayed matching-to-sample (DMS) task. Sample and test sounds were separated by a 5-s retention interval, and a behavioral response was required only if the sounds were identical (match trials). Sensitivity of auditory evoked responses in dTP to behavioral significance and context was further tested by passively presenting the sounds used as auditory WM memoranda both before and after the DMS task. Average evoked potentials (AEPs) for all cue types and phases of the experiment comprised two small-amplitude early onset components (N20, P40), followed by two broad, large-amplitude components occupying the remainder of the stimulus period (N120, P300), after which a final set of components were observed following stimulus offset (N80OFF, P170OFF). During the DMS task, the peak amplitude and/or latency of several of these components depended on whether the sound was presented as the sample or test, and whether the test matched the sample. Significant differences were also observed among the DMS task and passive exposure conditions. Comparing memory-related effects in the LFP signal with those obtained in the spiking data raises the possibility some memory-related activity in dTP may be locally produced and actively generated. The results highlight the involvement of dTP in auditory stimulus identification and recognition and its sensitivity to the behavioral significance of sounds in different contexts. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- James Bigelow
- Department of Psychological and Brain Sciences, University of Iowa, 11 Seashore Hall East, Iowa City, IA 52242, United States.
| | - Chi-Wing Ng
- Center for Neuroscience University of California, Davis, CA 95616, United States.
| | - Amy Poremba
- Department of Psychological and Brain Sciences, University of Iowa, 11 Seashore Hall East, Iowa City, IA 52242, United States.
| |
Collapse
|
6
|
Scott BH, Mishkin M, Yin P. Neural correlates of auditory short-term memory in rostral superior temporal cortex. Curr Biol 2014; 24:2767-75. [PMID: 25456448 DOI: 10.1016/j.cub.2014.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/26/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. RESULTS We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. CONCLUSIONS Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM.
Collapse
Affiliation(s)
- Brian H Scott
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pingbo Yin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA; Neural Systems Laboratory, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Bigelow J, Rossi B, Poremba A. Neural correlates of short-term memory in primate auditory cortex. Front Neurosci 2014; 8:250. [PMID: 25177266 PMCID: PMC4132374 DOI: 10.3389/fnins.2014.00250] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/28/2014] [Indexed: 11/13/2022] Open
Abstract
Behaviorally-relevant sounds such as conspecific vocalizations are often available for only a brief amount of time; thus, goal-directed behavior frequently depends on auditory short-term memory (STM). Despite its ecological significance, the neural processes underlying auditory STM remain poorly understood. To investigate the role of the auditory cortex in STM, single- and multi-unit activity was recorded from the primary auditory cortex (A1) of two monkeys performing an auditory STM task using simple and complex sounds. Each trial consisted of a sample and test stimulus separated by a 5-s retention interval. A brief wait period followed the test stimulus, after which subjects pressed a button if the sounds were identical (match trials) or withheld button presses if they were different (non-match trials). A number of units exhibited significant changes in firing rate for portions of the retention interval, although these changes were rarely sustained. Instead, they were most frequently observed during the early and late portions of the retention interval, with inhibition being observed more frequently than excitation. At the population level, responses elicited on match trials were briefly suppressed early in the sound period relative to non-match trials. However, during the latter portion of the sound, firing rates increased significantly for match trials and remained elevated throughout the wait period. Related patterns of activity were observed in prior experiments from our lab in the dorsal temporal pole (dTP) and prefrontal cortex (PFC) of the same animals. The data suggest that early match suppression occurs in both A1 and the dTP, whereas later match enhancement occurs first in the PFC, followed by A1 and later in dTP. Because match enhancement occurs first in the PFC, we speculate that enhancement observed in A1 and dTP may reflect top–down feedback. Overall, our findings suggest that A1 forms part of the larger neural system recruited during auditory STM.
Collapse
Affiliation(s)
- James Bigelow
- Department of Psychology, University of Iowa Iowa City, IA, USA
| | - Breein Rossi
- Department of Psychology, University of Iowa Iowa City, IA, USA
| | - Amy Poremba
- Department of Psychology, University of Iowa Iowa City, IA, USA
| |
Collapse
|
8
|
Noda T, Kanzaki R, Takahashi H. Amplitude and phase-locking adaptation of neural oscillation in the rat auditory cortex in response to tone sequence. Neurosci Res 2013; 79:52-60. [PMID: 24239971 DOI: 10.1016/j.neures.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 11/29/2022]
Abstract
Sensory adaptation allows stimulus sensitivity to be dynamically modulated according to stimulus statistics and plays pivotal roles in efficient neural computation. Here, it is hypothesized that in the auditory cortex, phase locking of local field potentials (LFPs) to test tones exhibits an adaptation property, i.e., phase-locking adaptation, which is distinct from the amplitude adaptation of oscillatory components. Series of alternating tone sequences were applied in which the inter-tone interval (ITI) and frequency difference (ΔF) between successive tones were varied. Then, adaptation was characterized by the temporal evolution of the band-specific amplitude and phase locking evoked by the test tones. Differences as well as similarities were revealed between amplitude and phase-locking adaptations. First, both amplitude and phase-locking adaptations were enhanced by short ITIs and small ΔFs. Second, the amplitude adaptation was more effective in a higher frequency band, while the phase-locking adaptation was more effective in a lower frequency band. Third, as with the adaptation of multiunit activities (MUAs), the amplitude adaptation occurred mainly within a second, while the phase-locking showed multi-second adaptation specifically in the gamma band for short ITI and small ΔF conditions. Fourth, the amplitude adaptation and phase-locking adaptation were co-modulated in a within-second time scale, while this co-modulation was not observed in a multi-second time scale. These findings suggest that the amplitude and phase-locking adaptations have different mechanisms and functions. The phase-locking adaptation is likely to play more crucial roles in encoding a temporal structure of stimulus than the amplitude adaptation.
Collapse
Affiliation(s)
- Takahiro Noda
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hirokazu Takahashi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
9
|
Niwa M, Johnson JS, O'Connor KN, Sutter ML. Active engagement improves primary auditory cortical neurons' ability to discriminate temporal modulation. J Neurosci 2012; 32:9323-34. [PMID: 22764239 PMCID: PMC3410753 DOI: 10.1523/jneurosci.5832-11.2012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 05/07/2012] [Accepted: 05/12/2012] [Indexed: 11/21/2022] Open
Abstract
The effect of attention on single neuron responses in the auditory system is unresolved. We found that when monkeys discriminated temporally amplitude modulated (AM) from unmodulated sounds, primary auditory cortical (A1) neurons better discriminated those sounds than when the monkeys were not discriminating them. This was observed for both average firing rate and vector strength (VS), a measure of how well neurons temporally follow the stimulus' temporal modulation. When data were separated by nonsynchronized and synchronized responses, the firing rate of nonsynchronized responses best distinguished AM- noise from unmodulated noise, followed by VS for synchronized responses, with firing rate for synchronized neurons providing the poorest AM discrimination. Firing rate-based AM discrimination for synchronized neurons, however, improved most with task engagement, showing that the least sensitive code in the passive condition improves the most with task engagement. Rate coding improved due to larger increases in absolute firing rate at higher modulation depths than for lower depths and unmodulated sounds. Relative to spontaneous activity (which increased with engagement), the response to unmodulated sounds decreased substantially. The temporal coding improvement--responses more precisely temporally following a stimulus when animals were required to attend to it--expands the framework of possible mechanisms of attention to include increasing temporal precision of stimulus following. These findings provide a crucial step to understanding the coding of temporal modulation and support a model in which rate and temporal coding work in parallel, permitting a multiplexed code for temporal modulation, and for a complementary representation of rate and temporal coding.
Collapse
Affiliation(s)
- Mamiko Niwa
- Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California 95618
| | - Jeffrey S. Johnson
- Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California 95618
| | - Kevin N. O'Connor
- Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California 95618
| | - Mitchell L. Sutter
- Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California 95618
| |
Collapse
|
10
|
Riecke L, Micheyl C, Vanbussel M, Schreiner CS, Mendelsohn D, Formisano E. Recalibration of the auditory continuity illusion: sensory and decisional effects. Hear Res 2011; 277:152-62. [PMID: 21276844 DOI: 10.1016/j.heares.2011.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 12/01/2022]
Abstract
An interrupted sound can be perceived as continuous when noise masks the interruption, creating an illusion of continuity. Recent findings have shown that adaptor sounds preceding an ambiguous target sound can influence listeners' rating of target continuity. However, it remains unclear whether these aftereffects on perceived continuity influence sensory processes, decisional processes (i.e., criterion shifts), or both. The present study addressed this question. Results show that the target sound was more likely to be rated as 'continuous' when preceded by adaptors that were perceived as clearly discontinuous than when it was preceded by adaptors that were heard (illusorily or veridically) as continuous. Detection-theory analyses indicated that these contrastive aftereffects reflect a combination of sensory and decisional processes. The contrastive sensory aftereffect persisted even when adaptors and targets were presented to opposite ears, suggesting a neural origin in structures that receive binaural inputs. Finally, physically identical but perceptually ambiguous adaptors that were rated as 'continuous' induced more reports of target continuity than adaptors that were rated as 'discontinuous'. This assimilative aftereffect was purely decisional. These findings confirm that judgments of auditory continuity can be influenced by preceding events, and reveal that these aftereffects have both sensory and decisional components.
Collapse
Affiliation(s)
- Lars Riecke
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Abolafia JM, Vergara R, Arnold MM, Reig R, Sanchez-Vives MV. Cortical Auditory Adaptation in the Awake Rat and the Role of Potassium Currents. Cereb Cortex 2010; 21:977-90. [DOI: 10.1093/cercor/bhq163] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
12
|
Yin P, Mishkin M, Sutter M, Fritz JB. Early stages of melody processing: stimulus-sequence and task-dependent neuronal activity in monkey auditory cortical fields A1 and R. J Neurophysiol 2008; 100:3009-29. [PMID: 18842950 PMCID: PMC2604844 DOI: 10.1152/jn.00828.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/04/2008] [Indexed: 11/22/2022] Open
Abstract
To explore the effects of acoustic and behavioral context on neuronal responses in the core of auditory cortex (fields A1 and R), two monkeys were trained on a go/no-go discrimination task in which they learned to respond selectively to a four-note target (S+) melody and withhold response to a variety of other nontarget (S-) sounds. We analyzed evoked activity from 683 units in A1/R of the trained monkeys during task performance and from 125 units in A1/R of two naive monkeys. We characterized two broad classes of neural activity that were modulated by task performance. Class I consisted of tone-sequence-sensitive enhancement and suppression responses. Enhanced or suppressed responses to specific tonal components of the S+ melody were frequently observed in trained monkeys, but enhanced responses were rarely seen in naive monkeys. Both facilitatory and suppressive responses in the trained monkeys showed a temporal pattern different from that observed in naive monkeys. Class II consisted of nonacoustic activity, characterized by a task-related component that correlated with bar release, the behavioral response leading to reward. We observed a significantly higher percentage of both Class I and Class II neurons in field R than in A1. Class I responses may help encode a long-term representation of the behaviorally salient target melody. Class II activity may reflect a variety of nonacoustic influences, such as attention, reward expectancy, somatosensory inputs, and/or motor set and may help link auditory perception and behavioral response. Both types of neuronal activity are likely to contribute to the performance of the auditory task.
Collapse
Affiliation(s)
- Pingbo Yin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
13
|
Riecke L, Mendelsohn D, Schreiner C, Formisano E. The continuity illusion adapts to the auditory scene. Hear Res 2008; 247:71-7. [PMID: 19015017 DOI: 10.1016/j.heares.2008.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 11/16/2022]
Abstract
The human auditory system is efficient at restoring sounds of interest. In noisy environments, for example, an interrupted target sound may be illusorily heard as continuing smoothly when a loud noise masks the interruptions. In quiet environments, however, sudden interruptions might signal important events. In that case, restoration of the target sound would be disadvantageous. Achieving useful perceptual stability may require the restoration mechanism to adapt its output to current perceptual demands, a hypothesis which has not yet been fully evaluated. In this study, we investigated whether auditory restoration depends on preceding auditory scenes, and we report evidence that restoration adapts to the perceived continuity of target sounds and to the loudness of interrupting sounds. In the first experiment, listeners adapted to illusory and non-illusory tone sweeps (targets) and interrupting noise, and we observed that the perceived continuity of the target and the loudness of the interrupting noise influenced the extent of subsequent restorations. A second experiment revealed that these adaptation effects were unrelated to the adapted spectra, indicating that non-sensory representations of the perceived auditory scene were involved. We argue that auditory restoration is a dynamic illusory phenomenon which recalibrates continuity hearing to different acoustic environments.
Collapse
Affiliation(s)
- Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
14
|
Abstract
Interest has recently surged in the neural mechanisms of audition, particularly with regard to functional imaging studies in human subjects. This review emphasizes recent work on two aspects of auditory processing. The first explores auditory spatial processing and the role of the auditory cortex in both nonhuman primates and human subjects. The interactions with visual stimuli, the ventriloquism effect, and the ventriloquism aftereffect are also reviewed. The second aspect is temporal processing. Studies investigating temporal integration, forward masking, and gap detection are reviewed, as well as examples from the birdsong system and echolocating bats.
Collapse
Affiliation(s)
- Gregg H. Recanzone
- Center for Neuroscience and Section of Neurobiology, Physiology & Behavior, University of California at Davis, California 95618
| | - Mitchell L. Sutter
- Center for Neuroscience and Section of Neurobiology, Physiology & Behavior, University of California at Davis, California 95618
| |
Collapse
|
15
|
Brosch M, Scheich H. Tone-sequence analysis in the auditory cortex of awake macaque monkeys. Exp Brain Res 2007; 184:349-61. [PMID: 17851656 DOI: 10.1007/s00221-007-1109-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 08/13/2007] [Indexed: 11/24/2022]
Abstract
The present study analyzed neuronal responses to two-tone sequences in the auditory cortex of three awake macaque monkeys. The monkeys were passively exposed to 430 different two-tone sequences, in which the frequency of the first tone and the interval between the first and the second tone in the sequence were systematically varied. The frequency of the second tone remained constant and was matched to the single-tone frequency sensitivity of the neurons. Multiunit activity was recorded from 109 sites in the primary auditory cortex and posterior auditory belt. We found that the first tone in the sequence could inhibit or facilitate the response to the second tone. Type and magnitude of poststimulatory effects depended on the sequence parameters and were related to the single-tone frequency sensitivity of neurons, similar to previous observations in the auditory cortex of anesthetized animals. This suggests that some anesthetics produce, at the most, moderate changes of poststimulatory inhibition and facilitation in the auditory cortex. Hence many properties of the sequence-sensitivity of neurons in the auditory cortex measured in anesthetized preparations can be applied to neurons in the auditory cortex of awake subjects.
Collapse
Affiliation(s)
- Michael Brosch
- Leibniz-Institut für Neurobiologie, Brenneckestrasse 6, 3911, Magdeburg, Germany.
| | | |
Collapse
|
16
|
Cohen YE, Theunissen F, Russ BE, Gill P. Acoustic Features of Rhesus Vocalizations and Their Representation in the Ventrolateral Prefrontal Cortex. J Neurophysiol 2007; 97:1470-84. [PMID: 17135477 DOI: 10.1152/jn.00769.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Communication is one of the fundamental components of both human and nonhuman animal behavior. Auditory communication signals (i.e., vocalizations) are especially important in the socioecology of several species of nonhuman primates such as rhesus monkeys. In rhesus, the ventrolateral prefrontal cortex (vPFC) is thought to be part of a circuit involved in representing vocalizations and other auditory objects. To further our understanding of the role of the vPFC in processing vocalizations, we characterized the spectrotemporal features of rhesus vocalizations, compared these features with other classes of natural stimuli, and then related the rhesus-vocalization acoustic features to neural activity. We found that the range of these spectrotemporal features was similar to that found in other ensembles of natural stimuli, including human speech, and identified the subspace of these features that would be particularly informative to discriminate between different vocalizations. In a first neural study, however, we found that the tuning properties of vPFC neurons did not emphasize these particularly informative spectrotemporal features. In a second neural study, we found that a first-order linear model (the spectrotemporal receptive field) is not a good predictor of vPFC activity. The results of these two neural studies are consistent with the hypothesis that the vPFC is not involved in coding the first-order acoustic properties of a stimulus but is involved in processing the higher-order information needed to form representations of auditory objects.
Collapse
Affiliation(s)
- Yale E Cohen
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
17
|
Phan ML, Recanzone GH. Single-neuron responses to rapidly presented temporal sequences in the primary auditory cortex of the awake macaque monkey. J Neurophysiol 2006; 97:1726-37. [PMID: 17135478 DOI: 10.1152/jn.00698.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One fundamental process of the auditory system is to process rapidly occurring acoustic stimuli, which are fundamental components of complex stimuli such as animal vocalizations and human speech. Although the auditory cortex is known to subserve the perception of acoustic temporal events, relatively little is currently understood about how single neurons respond to such stimuli. We recorded the responses of single neurons in the primary auditory cortex of alert monkeys performing an auditory task. The stimuli consisted of four tone pips with equal duration and interpip interval, with the first and last pip of the sequence being near the characteristic frequency of the neuron under study. We manipulated the rate of presentation, the frequency of the middle two tone pips, and the order by which they were presented. Our results indicate that single cortical neurons are ineffective at responding to the individual tone pips of the sequence for pip durations of <12 ms, but did begin to respond synchronously to each pip of the sequence at 18-ms durations. In addition, roughly 40% of the neurons tested were able to discriminate the order that the two middle tone pips were presented in at durations of > or =24 ms. These data place the primate primary auditory cortex at an early processing stage of temporal rate discrimination.
Collapse
Affiliation(s)
- M L Phan
- Center for Neuroscience, University of California at Davis, 1544 Newton Ct., Davis, CA 95618, USA
| | | |
Collapse
|
18
|
Shechter B, Depireux DA. Response adaptation to broadband sounds in primary auditory cortex of the awake ferret. Hear Res 2006; 221:91-103. [PMID: 16982164 DOI: 10.1016/j.heares.2006.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 07/07/2006] [Accepted: 08/04/2006] [Indexed: 11/30/2022]
Abstract
Driven by previous reports of adaptation to persistent stimuli in other brain regions, we investigated adaptive effects in the Primary Auditory Cortex of awake non-behaving ferrets (Mustela putorius furo). Electrophysiological data was obtained in response to the presentation of auditory gratings with a structured spectro-temporal envelope of varying bandwidth which had repeated transitions between low and high modulation depths. The responses were analyzed in terms of the evoked spike rates and in terms of the degree of phase locking to the modulation. We found two populations of cells, both of which showed adaptation in the traditional sense. For one population, we also found a second order of adaptation--i.e., adaptation of the adaptation. This suggests the existence of at least two coding strategies which differ in the weight placed on sensory context.
Collapse
Affiliation(s)
- Barak Shechter
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, 20 Penn St., HSF II Rm. S251, Baltimore, MD 21201, USA.
| | | |
Collapse
|